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PART ONE
LASER PRINCIPLES






Chapter 1

Fundamentals of Lasers

1.1 The Nature of Light

In order to understand how a laser works it will be useful to
recount how present ideas conceming the nature of light have
come about. Of all man’ s senses that of vision is the most
important. The connection between vision and the rising and the
setting of the sun was probably one of the first scientific
deductions made by man. The Greeks were almost certainly the
first to try to explain how vision takes place and consequently to
conjecture on the nature of light itself. They had two theories: first
that the eye reached out by means of probes or tentacles and
touched the object which was thus ‘seen’. Secondly that the
object itself emitted some sort of material which was collected by
the eye to give the sensation of vision. These theories are referred
to as the tactile and emission theories.

The advent of experimental science in the 17th century
brought about the abandonment of the tacile theory and the
development of two emission theories each passionately defended
by their respective proponents. These two emission theories were
the corpuscular theory of lsaac Newton and the wave theory of
Robert Hooke and Christian Huygens.



Even at that time a considerable amount of experimental data
was available. Reflection and refraction had been known from
antiquity . Interference( although it was not referred to as such until
Thomas Young propounded his theories in the early 19th century)
had been observed independently by Hooke and Robert Boyle in
1665 in the form of the somewhat unfairly named Newton’s rings.
In the same year diffraction had been observed by Grimaldi. Four
years later Bartholinus discovered double refraction in a crystalline
material called Iceland spar.

The wave theory, initially proposed in a primitive form by
Hooke, then advanced and refined by Huygens, accounted very well
for reflection, refraction and double refraction and the latter led
Huygens to the conclusion that in some way light could be
polarized in different directions. Huygens based his explanations on
the principle that every point on a wavefront acted as a secondary
source of spherical waves which were propagated through an all
pervading medium called the aether. At that time transverse
waves, where the direction of vibration is at right angles to the
direction of propagation, were well known in the form of water
waves. Also familiar as sound waves were longitudinal waves. In
this type of wave the direction of vibration is parallel to the
direction of propagation. That light waves were longitudinal in
nature was universally accepted by the suppirters of the wave
theory. This seems an odd choice as variation in polarization can
be explained elegantly on a transverse wave theory but is quite
inexplicable in the case of longitudinal waves. It may be that the
association of sound and vision led to the idea that the waves in
each case must be of the same type.

This inability to account for variations in polarization on a
. 4 . -



longitudinal wave theory led Newton to devise a corpuscular
explanation Newton thought of light as particles obeying his
dynarical laws of motion and accounted for rectilinear propagation
by assuming that the light particles had no mass and so, according
to his laws of motion, could not be changed from their straight
line trajectories by any impressed forces. Newton thought that
rectilinear propagation was inconsistent with a wave theory as a
light wave would be expected to diffract, i. e., to spread round
comers and he devised ingenious explanations to account for
Grimaldi’s earlier observations. Newton was, of course, quite
correct in thinking that light waves must exhibit diffraction but he
failed to realise that if the wavelength is small enough any such
diffraction would be extremely difficult to observe.

For a century or so the might of Newton’s authority held
sway and the wave theory did not obtain general acceptance,
albeit with some notable exceptions; particularly that of the
mathematician Euler, who correctly associated waves of different
frequencies with different colours.

In 1801 Thomas Young in his classical two-slit experiment
showed that light from two sources could combine to form regions
of brightness and darkness called fringes. These could only be
explained in terms of a wave theory, a bright fringe being formed
where the two waves combine in phase so as to reinforce one
another; and dark fringes being formed where the two waves find
themselves out of phase and hence cancelling each other. Young
termed these phenomena constructive and destructive interference
respectively .

The colours seen when thin films are illuminated with white
light were also explained by Young in terms of a wave theory

. 5 .



where, like Euler, he associated different colours with different
wavelengths. At about the same time Malus discovered polarization
by reflection and in 1816 Fresnel and Arago showed that two waves
polarized at right angles could not interfere. Young suggested that
the only possible explanation for these observations was that light
must not only be a wave but that, in addition, it had to be of a
transverse nature.

Additional evidence in favour of the wave theory was provided
by Fresnel, who explained diffraction quantitatively on the wave
theory. Further conclusive proof was obtained in 1850, when
Foucault measured the speed of light in air and water. According
to the corpuscular theory the denser material would attract the
corpuscles hence speeding up the light, whereas on the wave
theory the converse would be true. Foucault found that the speed
of light in air was faster than in water and thus disproved the
corpuscular theory.

A dramatic advance in the understanding of light resulted from
the work on electricity and magnetism by Faraday, Oersted and
Herwy. In 1864 James Clerk Maxwell combined all the
experimental data into a set of equations. From this set of
equations could be deduced the existence of a wave with the
property that its speed, c, in free space bore a simple relationship
to the dielectric constant ( permittivity), e, and the magnetic
permeability .. This relationship is expressed in equation 1.1:

[ 1
c = rroco (1.1)

Now the extraordinary property of this wave was that on
substituting known values for z, and ¢, in equation 1.1 a result
identical to the velocity of light in a vacuum was obtained, the

. 6 .




