O'REILLY"

Programming

ocala

ScalaZwmiz (FenkR)

R \\ "
N

MR
o
B

% B k3 iR Dean Wampler, Alex Payne Z&

TP3 (23 A
[cES

sB2h

ScalaZgig wam

Programming Scala

Dean Wampler, Alex Payne %

Beijing + C e O'REILLY®

L Inc RN R F A 22 AR AL AR

BR REAFHR

B H#Ehit s B (CIP) #17

Scala 4 #&: 8 2 IR : 2 3¢/ (3) 7 & ¥ (Wanmpler,
D), () B (Payne, A)FE. —¥HA. —FE . K
R2FH AL, 2015.8

4 JF3C . Programming Scala, 2E

ISBN 978-7-5641—-5922-1

[1.OS NM.0FH: @O M. DIAVA &
B RFTE V. OTP312

[A B B4 CIP BB F (2015) % 165497 5

VLI RABUR EVERLE TR &
E=:10- 2015 - 156 5

© 2014 by O'Reilly Media, Inc.
Reprint of the English Edition, jointly published by O’Reilly Media, Inc. and Southeast University Press,

2015. Authorized reprint of the original English edition, 2015 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reprodaction in whole or in part in any form

3% LB M &g O'Reilly Media, Inc. ¥ & 2014,

TP iR A R kAR R 2015, St P iR aY iR A 4K B 1T B R A Ao 4 B AR BT A
—— O'Reilly Media, Inc.#1 % 7T,

WA A o AT 5 @35 5T o A B BT 5 Ao 2 R RN H X EH).

Scala Zm 2 %5 2 UG EDARD

MR FT: R K#HRA

o bk mEPOERE 25 HE4 210096
R A g

™ Hik: http//www.seupress.com

B FHR{4: press@seupress.com

Bl B BT RS = BRI FRA F
AR WIZERXRBOZEK 16FAF
Bl 5K: 3675

F O 0FF

B W 201S4E8HE 1R

El K. 20154F 8 ASE 1 REDRI

H 5. ISBN 98- 7-5641-5922- 1
E Y. 88007C

A EBER DR, RS EHNPHER . BiE(EE) . 025- 83791830

To Everette Lawrence Wampler, August 28, 1931 - May 9, 2013.

— Dean

Foreword

If there has been a common theme throughout my career as a programmer, it has been
the quest for better abstractions and better tools to support the craft of writing software.
Over the years, I have come to value one trait more than any other: composability. If
one can write code with good composability, it usually means that other traits we soft-
ware developers value—such as orthogonality, loose coupling, and high cohesion—are
already present. It is all connected.

When I discovered Scala some years ago, the thing that made the biggest impression on
me was its composability.

Through some very elegant design choices and simple yet powerful abstractions that
were taken from the object-oriented and functional programming worlds, Martin
Odersky has managed to create a language with high cohesion and orthogonal, deep
abstractions that invites composability in all dimensions of software design. Scala is
truly a SCAlable LAnguage that scales with usage, from scripting all the way up to large-
scale enterprise applications and middleware.

Scala was born out of academia, but it has grown into a pragmatic and practical language
that is very much ready for real-world production use.

What excites me most about this book is that it’s so practical. Dean has done a fantastic
job, not only by explaining the language through interesting discussions and samples,
but also by putting it in the context of the real world. It’s written for the programmer
who wants to get things done.

I had the pleasure of getting to know Dean some years ago when we were both part of
the aspect-oriented programming community. Dean holds a rare mix of deep analytical
academic thinking and a pragmatic, get-things-done kind of mentality.

You are about to learn how to write reusable components using mixin and function
composition; how to write Reactive applications using Akka; how to make effective use
of advanced features in Scala such as macros and higher kinded types; how to utilize
Scala’s rich, flexible, and expressive syntax to build domain-specific languages; how to

effectively test your Scala code; how to let Scala simplify your Big Data problems; and
much, much more.

Enjoy the ride. I sure did.

—Jonas Bonér
CTO & cofounder Typesafe, August 2014

xvi | Foreword

Preface

Programming Scala introduces an exciting and powerful language that offers all the
benefits of a modern object model, functional programming (FP), and an advanced type
system, while leveraging the industry’s investment in the Java Virtual Machine (JVM).
Packed with code examples, this comprehensive book teaches you how to be productive
with Scala quickly, and explains what makes this language ideal for today’s scalable,
distributed, component-based applications that support concurrency and distribution.
You’'ll also learn how Scala takes advantage of the advanced JVM as a platform for
programming languages.

Learn more at http://programming-scala.org or at the booK’s catalog page (http://bit.ly/
programmingScala_2E). ‘

Welcome to Programming Scala, Second Edition

Programming Scala, First Edition was published five years ago, in the fall of 2009. At the
time, it was only the third book dedicated to Scala, and it just missed being the second
by a few months. Scala version 2.7.5 was the official release, with version 2.8.0 nearing
completion.

A lot has changed since then. At the time of this writing, the Scala version is 2.11.2.
Martin Odersky, the creator of Scala, and Jonas Bonér, the creator of Akka, an actor-
based concurrency framework, cofounded Typesafe (http://typesafe.com) to promote
the language and tools built on it.

There are also a lot more books about Scala. So, do we really need a second edition of
this book? Many excellent beginner’s guides to Scala are now available. A few advanced
books have emerged. The encyclopedic reference remains Programming in Scala, Sec-
ond Edition, by Odersky et al. (Artima Press).

Yet, I believe Programming Scala, Second Edition remains unique because it is a com-
prehensive guide to the Scala language and ecosystem, a guide for beginners to advanced

Xvii

users, and it retains the focus on the pragmatic concerns of working professionals. These
characteristics made the first edition popular.

Scala is now used by many more organizations than in 2009 and most Java developers
have now heard of Scala. Several persistent questions have emerged. Isn’t Scala complex?
Since Java 8 added significant new features found in Scala, why should I switch to Scala?

I'll tackle these and other, real-world concerns. I have often said that I was seduced by
Scala, warts and all. I hope you'll feel the same way after reading Programming Scala,
Second Edition.

How to Read This Book

Because this is a comprehensive book, beginning readers don't need to read the whole
thing to be productive with Scala. The first three chapters, Zero to Sixty: Introducing
Scala, Type Less, Do More, and Rounding Out the Basics, provide a quick summary of
core language features. The fourth and fifth chapters, Pattern Matching and Implicits,
begin the more in-depth coverage with two fundamental tools that you’ll use every day
in your Scala code.

If you're new to functional programming (FP), Chapter 6 provides an introduction to
this important approach to software development, as implemented in Scala. Next is
Chapter 7, which explains Scala’s extensions to the venerable for loop and how it pro-
vides a succinct syntax for sophisticated, idiomatic functional code.

Then we turn to Scala’s support for object-oriented programming (OOP) in Chapter 8.
I put the FP chapter before the OOP chapters to emphasize the importance of FP in
solving many software development problems of our time. It would be easy to use Scala
as a “better object-oriented Java,” but that would ignore its most powerful tools! Most
of this chapter will be conceptually easy to understand, as you learn how Scala defines
classes, constructors, etc. that are familiar in Java.

Chapter 9 explores Scala’s ability to compose behaviors using traits. Java 8 adds a subset
of this functionality through its enhancements to interfaces, partially inspired by Scala
traits. Even experienced Java programmers will need to understand this material.

The next four chapters, 10 through 13, The Scala Object System, Part I, The Scala Object
System, Part II, The Scala Collections Library, and Visibility Rules, walk through Scala’s
object model and library types in detail. You should read Chapter 10 carefully, because
it contains essential information to master early on. However, Chapter 11 goes into less
critical information, the details of properly implementing nontrivial type hierarchies.
You might skim that chapter the first time through the book. Chapter 12 discusses the
design of the collections and some useful information about using them wisely. Again,
skim this chapter if you're new to Scala and come back to it when you’re trying to master
the details of the collections API. Finally, Chapter 13 explains in detail Scala’s

xviii | Preface

fine-grained extensions to Java’s notions of public, protected, and private visibility. Skim
this chapter.

Next we move into more advanced territory, starting with Chapter 14 and Chapter 15,
which cover Scala’s sophisticated type system. I've divided the coverage into two chap-
ters: the first chapter covers concepts that new Scala programmers will need to learn
relatively quickly, while the second chapter covers more advanced material that can be
deferred until later.

Similarly, Chapter 16, Advanced Functional Programming, covers more advanced math-
ematical concepts that the average Scala developer won't need initially, such as Monad
and Functor from Category Theory.

Chapter 17, Tools for Concurrency, will be useful for developers of large-scale services
that require concurrency for resiliency and scalability (most of us, actually). It discusses
AKka (http://akka.io), a rich actor-based concurrency model, and library types such as
Futures for writing asynchronous code.

Chapter 18, Scala for Big Data, makes the case that a killer app for Scala, and functional
programming in general, is Big Data, or any data-centric computation.

Chapters 19 and 20, Dynamic Invocation in Scala and Domain-Specific Languages in
Scala, go together. They are somewhat advanced topics, discussing tools for construc-
tion of rich domain-specific languages.

Chapter 21, Scala Tools and Libraries, discusses tools like IDEs and third-party libraries.
If you're new to Scala, read about IDE and editor support, and the section on SBT, the
de facto build tool for Scala projects. Use the library lists for reference later on. Chap-
ter 22, Java Interoperability, will be useful for teams that need to interoperate between
Java and Scala code.

I wrote Chapter 23, Application Design, for architects and software leads to share my
thoughts about good application design. I believe the traditional model of relatively fat
JAR files with complex object graphs is a broken model and needs to go.

Finally, the most advanced topic in the book is covered in Chapter 24, Metaprogram-
ming: Macros and Reflection. You can definitely skip this chapter if you're a beginner.

The book concludes with Appendix A, References for further reading.

What Isn’t Covered?

A focus of the latest 2.11 release is modularizing the library to decompose it into smaller
JAR files, so it’s easier to exclude unneeded code from deployment in space-sensitive
environments (e.g., mobile devices). Some previously deprecated packages and types of
the library were also removed. Other parts are deprecated in the 2.11 release, often
because they are no longer maintained and there are better, third-party alternatives.

Preface | xix

Hence, we won't discuss the following packages that are deprecated in 2.11:

scala.actors (http://bit.ly/1tlem7W)
An actor library. Use Akka actors instead (which we’ll discuss in “Robust, Scalable
Concurrency with Actors” on page 429).

scala.collection.script (http://bit.ly/13p3wKl)
A library for writing collection observations and update “scripts.”

scala.text (http://bit.ly/1s0PvrR)
A “pretty-printing” library.

The following were deprecated in Scala 2.10 and removed in 2.11:

scala.util.automata (http://bit.ly/1DDinM]1)
For building deterministic, finite automatons (DFAs) from regular expressions.

scala.util.grammar (http://bit.ly/1tleunQ)
Part of a parsing library.

scala.util.logging (http://bit.ly/1E8xNKn)
The recommendation is to use one of the many third-party, actively maintained
logging libraries for the JVM.

scala.util.regexp (http://bit.ly/10akU3j)
Regular expression parsing. The scala.util.matching (http://bit.ly/13p4Lcm)
package with regular expression support has been enhanced instead.

The .NET compiler backend
For a while, the Scala team worked on a compiler backend and library for the NET
runtime environment, but interest in this port has waned, so it was discontinued.

We won't discuss every package and type in the library. Here is a partial list of omissions
for space and other reasons:

scala.swing (http://bit.ly/13p4LcD)
Wrapper around the Java Swing library. While still maintained, it is rarely used.

scala.util.continuations (http://bitly/13p4L]p)
Compiler plug-in for continuation-passing style (CPS) code generation. It is a spe-
cialized tool with limited adoption.

The App (http://bit.ly/108gMR]) and DelayedInit (http://bit.ly/1E8xQpEF) traits
This pair of types was meant to conveniently implement main (entry-point) types,
the analog of static main methods in Java classes. However, they sometimes cause
surprising behavior, so I don’t recommend using them. Instead, I'll write main
routines in the normal, idiomatic Scala way.

xx | Preface

scala.ref (http://bit.ly/1tleMv5)
Wrappers around Java types such as WeakReference (http://bit.ly/IwO9WfM),
which corresponds to java.lang.ref.WeakReference (http://bit.ly/10FvyjC).

scala.runtime (http://bit.ly/13p4RB0)
Types used as part of the library implementation.

scala.util.hashing (http://bit.ly/1zmu0cL)
Hashing algorithms.

Welcome to Programming Scala, First Edition

Programming languages become popular for many reasons. Sometimes, programmers
on a given platform prefer a particular language, or one is institutionalized by a vendor.
Most Mac OS programmers use Objective-C. Most Windows programmers use C++
and .NET languages. Most embedded-systems developers use C and C++.

Sometimes, popularity derived from technical merit gives way to fashion and fanaticism.
C++, Java, and Ruby have been the objects of fanatical devotion among programmers.

Sometimes, a language becomes popular because it fits the needs of its era. Java was
initially seen as a perfect fit for browser-based, rich client applications. Smalltalk cap-
tured the essence of object-oriented programming as that model of programming en-
tered the mainstream.

Today, concurrency, heterogeneity, always-on services, and ever-shrinking develop-
ment schedules are driving interest in functional programming. It appears that the
dominance of object-oriented programming may be over. Mixing paradigms is becom-
ing popular, even necessary.

We gravitated to Scala from other languages because Scala embodies many of the optimal
qualities we want in a general-purpose programming language for the kinds of appli-
cations we build today: reliable, high-performance, highly concurrent Internet and en-
terprise applications.

Scala is a multiparadigm language, supporting both object-oriented and functional
programming approaches. Scala is scalable, suitable for everything from short scripts
up to large-scale, component-based applications. Scala is sophisticated, incorporating
state-of-the-art ideas from the halls of computer science departments worldwide. Yet
Scala is practical. Its creator, Martin Odersky, participated in the development of Java
for years and understands the needs of professional developers.

Both of us were seduced by Scala, by its concise, elegant, and expressive syntax and by
the breadth of tools it put at our disposal. In this book, we strive to demonstrate why
all these qualities make Scala a compelling and indispensable programming language.

Preface | xxi

If you are an experienced developer who wants a fast, thorough introduction to Scala,
this book is for you. You may be evaluating Scala as a replacement for or complement
to your current languages. Maybe you have already decided to use Scala, and you need
tolearn its features and how to use it well. Either way, we hope to illuminate this powerful
language for you in an accessible way.

We assume that you are well versed in object-oriented programming, but we don’t as-
sume that you have prior exposure to functional programming. We assume that you are
experienced in one or more other programming languages. We draw parallels to features
in Java, C#, Ruby, and other languages. If you know any of these languages, we’ll point
out similar features in Scala, as well as many features that are new.

Whether you come from an object-oriented or functional programming background,
you will see how Scala elegantly combines both paradigms, demonstrating their com-
plementary nature. Based on many examples, you will understand how and when to
apply OOP and FP techniques to many different design problems.

In the end, we hope that you too will be seduced by Scala. Even if Scala does not end up
becoming your day-to-day language, we hope you will gain insights that you can apply
regardless of which language you are using.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

xxii | Preface

This element signifies a general note.

This element indicates a warning or caution.

\

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless youre reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from
this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Programming Scala, Second Edition by Dean
Wampler and Alex Payne. Copyright 2015 Kevin Dean Wampler and Alex Payne,
978-1-491-94985-6”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Getting the Code Examples

You can download the code examples from GitHub (http://bit.ly/prog-scala-code). Un-
zip the files to a convenient location. See the README file in the distribution for in-
structions on building and using the examples. (I'll summarize those instructions in the
first chapter.)

Some of the example files can be run as scripts using the scala command. Others must
be compiled into class files. Some files contain deliberate errors and won't compile. I
have adopted a filenaming convention to indicate each of these cases, although as you
learn Scala it should become obvious from the contents of the files, in most cases:

Preface | xxiii

*.scala
The standard Scala file extension is .scala, but that doesn’t distinguish between
source files that must be compiled using scalac, script files you run directly with
scala, or deliberately invalid code files used at times in this book. So, in the example
code, any file with the .scala extension must be compiled separately, like you would
compile Java code.

Files that end in .sc can be run as scripts on a command line using scala, e.g., scala
foo.sc. You can also start scala in the interpreter mode and load any script file in
the interpreter using the :load filename command. Note that this naming con-
vention is not a standard convention in the Scala community, but it’s used here
because the SBT build will ignore these files. Also, this file extension is used by the
new IDE worksheet feature we will discuss in the next chapter. So, it’s a convenient

hack. To be clear, you will normally use .scala as the extension of scripts and code
files alike.

*.scalaX and *.scX
Some example files contain deliberate errors that will cause compilation errors.
Rather than break the build for the examples, those files will use the exten-
sion .scalaX for code files or .scX for scripts. Again, this is not an industry conven-
tion. These files will also have embedded comments to explain what’s wrong with

them.

Safari® Books Online

i .. Safari Books Online is an on-demand digital library that
‘ S af a r l delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea-
tive professionals use Safari Books Online as their primary resource for research, prob-
lem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication manu-
scripts in one fully searchable database from publishers like O’Reilly Media, Prentice
Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que, Peachpit
Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann, IBM
Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders, McGraw-Hill,
Jones & Bartlett, Course Technology, and hundreds more. For more information about
Safari Books Online, please visit us online.

xxiv | Preface

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/programmingScala_2E.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments for the Second Edition

As 1, Dean Wampler, worked on this edition of the book, I continued to enjoy the men-
toring and feedback from many of my Typesafe colleagues, plus the valuable feedback
from people who reviewed the early-access releases. I'm especially grateful to Ramnivas
Laddad, Kevin Kilroy, Lutz Huehnken, and Thomas Lockney, who reviewed drafts of
the manuscript. Thanks to my long-time colleague and friend, Jonas Bonér, for writing
an updated Foreword for the book.

And special thanks to Ann who allowed me to consume so much of our personal time
with this project. I love you!

Acknowledgments for the First Edition

As we developed this book, many people read early drafts and suggested numerous
improvements to the text, for which we are eternally grateful. We are especially grateful
to Steve Jensen, Ramnivas Laddad, Marcel Molina, Bill Venners, and Jonas Bonér for
their extensive feedback.

Preface | xxv

Much of the feedback we received came through the Safari Rough Cuts releases and the
online edition available at http://programmingscala.com. We are grateful for the feed-
back provided by (in no particular order) Iulian Dragos, Nikolaj Lindberg, Matt Hellige,
David Vydra, Ricky Clarkson, Alex Cruise, Josh Cronemeyer, Tyler Jennings, Alan Su-
pynuk, Tony Hillerson, Roger Vaughn, Arbi Sookazian, Bruce Leidl, Daniel Sobral, Eder
Andres Avila, Marek Kubica, Henrik Huttunen, Bhaskar Maddala, Ged Byrne, Derek
Mahar, Geoffrey Wiseman, Peter Rawsthorne, Geoffrey Wiseman, Joe Bowbeer,
Alexander Battisti, Rob Dickens, Tim MacEachern, Jason Harris, Steven Grady, Bob
Follek, Ariel Ortiz, Parth Malwankar, Reid Hochstedler, Jason Zaugg, Jon Hanson,
Mario Gleichmann, David Gates, Zef Hemel, Michael Yee, Marius Kreis, Martin Siis-
skraut, Javier Vegas, Tobias Hauth, Francesco Bochicchio, Stephen Duncan Jr., Patrik
Dudits, Jan Niehusmann, Bill Burdick, David Holbrook, Shalom Deitch, Jesper Nor-
denberg, Esa Laine, Gleb Frank, Simon Andersson, Patrik Dudits, Chris Lewis, Julian
Howarth, Dirk Kuzemczak, Henri Gerrits, John Heintz, Stuart Roebuck, and Jungho
Kim. Many other readers for whom we only have usernames also provided feedback.
We wish to thank Zack, JoshG, ewilligers, abcoates, brad, teto, pjcj, mkleint, dandoyon,
Arek, rue, acangiano, vkelman, bryanl, Jeff, mbaxter, pjb3, kxen, hipertracker, ctran,
Ram R,, cody, Nolan, Joshua, Ajay, Joe, and anonymous contributors. We apologize if
we have overlooked anyone!

Our editor, Mike Loukides, knows how to push and prod gently. He’s been a great help
throughout this crazy process. Many other people at O’Reilly were always there to an-
swer our questions and help us move forward.

We thank Jonas Bonér for writing the Foreword for the book. Jonas is a longtime friend
and collaborator from the aspect-oriented programming (AOP) community. For years,
he has done pioneering work in the Java community. Now he is applying his energies
to promoting Scala and growing that community.

Bill Venners graciously provided the quote on the back cover. The first published book
on Scala, Programming in Scala (Artima), that he cowrote with Martin Odersky and
Lex Spoon, is indispensable for the Scala developer. Bill has also created the wonderful
ScalaTest library.

We have learned a lot from fellow developers around the world. Besides Jonas and Bill,
Debasish Ghosh, James Iry, Daniel Spiewak, David Pollack, Paul Snively, Ola Bini, Dan-
iel Sobral, Josh Suereth, Robey Pointer, Nathan Hamblen, Jorge Ortiz, and others have
illuminated dark corners with their blog entries, forum discussions, and personal con-
versations.

Dean thanks his colleagues at Object Mentor and several developers at client sites for
many stimulating discussions on languages, software design, and the pragmatic issues
facing developers in industry. The members of the Chicago Area Scala Enthusiasts
(CASE) group have also been a source of valuable feedback and inspiration.

xxvi | Preface

Alex thanks his colleagues at Twitter for their encouragement and superb work in dem-
onstrating Scala’s effectiveness as a language. He also thanks the Bay Area Scala Enthu-
siasts (BASE) for their motivation and community.

Most of all, we thank Martin Odersky and his team for creating Scala.

Preface | xvii

