A
*
=
m_ﬁ_.m
H
3k
£

v

72}
[5]
.
e
(]
w2
on
=
-
o
[
(]
=
.
on
=]
m
o
<
g
Gl
o
[7p]

7& 3L hiR

=TERAMRAELE

— KA. BAREG

Reuse-Based Software Eng

ineering

Techniques, Organization, and Controls

Sherif Yacoub Edward Addy

Ali Mili

[Z£] Hafedh Mili

Sallale}

TFIN &

HETELE

IR T 32
—HR AR, HEAFNEF

(FXHR)

[T

E
L

—

—

- - -

Reuse-Based Software Engineering :

Techniques, Organization, and Controls

Hafedh Mili
‘ Ali Mili
%] Sherif Yacoub -
Edward Addy

T F 14 & s A
Publishing House of Electronics Industry
Jt & « BEUING

nEEN

ABEENA T ETERNEA TR EBRER MR RNERM NS, £mot & TERNKET
BRI MECRS SRR AR, ETETREERNCEBER . EEMALRE, FMeR T XER Mk
B TAFNRETF R AR SKL TR Yz AR, £BHNEREN, NEem, FEEME T HXS
A, LMEREE MEATT AR ERAAR, .

A BEA TSR BB E RS ROEENSRA R, RSB T L B R SR
AR BARFHS B ME.

Hafedh Mili, Ali Mili, Sherif Yacoub, Edward Addy: Reuse-Based Software Engineering: Techniques, Organization, and Controls.
ISBN 0-471-39819-5

Copyright © 2002, John Wiley & Sons, Inc. All Rights Reserved.

AUTHORIZED REPRINT OF THE EDITION PUBLISHED BY JOHN WILEY & SONS, INC., New York, Chichester,
Weinheim, Singapore, Brisbane, Toronto. No part of this book may be reproduced in any form without the written permission
of John Wiley & Sons, Inc.

This reprint is for sale in the People” s Republic of China only and exclude Hong Kong and Macau.

English reprint Copyright © 2003 by John Wiley & Sons, Inc. and Publishing House of Electronics Industry.

A BY R ED AR #F Tl ARAL 1 John Wiley & Sons SYEH R, BIRA{URIEPHEARIMEREN (£
BEBMRTEITEX) $8%. REDREREHEF, AMELUEMTAERRBEEBNEMTRLT

MR RS ER%ICS: B : 01-2003-0601
HHEERRSE (CIP) #iE

ETERANBBETIE—HEAR, HEMEH = Reuse-Based Software Engineering: Techniques, Organization,
and Controls / (3) X#| (Mili, H.) %3 - Jtx0. BT LiLiikAL, 20034

(BREIBRAS)

ISBN 7-5053-8624-7

.2 Tk ILE{4 T8 -2 IV. TP311.5 .
o E iR A 508 CTP 3B (2003) 55022576 5

FiLgmE: B0

ED R & AR XZLHEDR

HREST: BFIIEARIE http://www.phei.com.cn
AETHEXFHERE 17358 #B%: 100036

% . f¥Feds

F A& 787 x 980 1/16 Epgk: 415 FH. 930 TF

M K: 200344 HSE1RR 200344 A% 1 KREPRI

E #r: 59.00 T

ABELFLLBBAGEYE, wHRBREAE, FOMEREAR, ZHECES, FEALRFHBER, B
% %45 (010) 68279077

Preface

Software productivity has been steadily increasing since 1970, but not enough
to close the gap between the demands placed on the software industry, and
what the state of the practice can deliver. Today, as software costs continue to
represent an increasing share of computer system costs, and as software faults
continue to be responsible for many expensive failures, nothing short of an
order-of-magnitude improvement in software quality and development pro-
ductivity will save the software industry from its perennial state of crisis.
Reuse-based software engineering has been touted, since the late 1960s, as the
only practical and realistic approach that can deliver such improvements “in
the short term.” This book provides a state of the art and the practice of all
aspects of reuse-based software engineering, and attempts to explain why the
“short term” keeps eluding us, and how to catch up.

Despite decades-long intensive research in software engineering and artifi-
cial intelligence, software generation remains an elusive goal. Progress has
been made, of course, but the target has continued to move even faster, out-
distancing the kind and scale of software that techniques can deliver. Hence,
short of generative sufficiently understanding the process we use to build soft-
ware from imprecise and contradictory user needs, subject to all the contra-
dictory constraints of cost, reliability, time to market, and portability—to name
a few—to encode it into a generator, we could try to reuse the products or
repeat the development processes, of previous developments efforts. The
underlying hypotheses are that (1) the computer systems that we develop
today have a lot in common and (2) by reusing the process and products of
previous development efforts to solve new problems, we increase productivity
and improve the quality of the resulting system.

Reuse is not only natural but may be the key to progress. Psychologists and

. 1 .

PREFACE

cognitive scientists have long argued that we humans seldom solve problems
from first principles. When faced with a problem to solve, we first perform a
“rote recall,” just in case this problem was already solved. When that fails, we
perform “approximate recall,” with the hope of identifying an already solved
problem that is so close that its solution can be adapted, locally, to address the
new problem. Only when that fails do we fall back on analytic problem solving,
at least as far as decomposing the initial problem into a set of more manage-
able subproblems. The key to progress, some would argue, is to reuse (learn
from past experiences), and to communicate (be able to transmit knowledge
to new generations).

In the early days of the profession, because of the scale of the systems to
be built (small), the expressiveness of the programming languages (low level),
and the cost distribution of computer systems (machines and machine time
predominant), it was felt that much benefit would accrue from reusing exe-
cutable programs. Much research effort in software engineering in general and
software reuse in particular went into software packaging issues, and more
specifically, language features that support modularization and abstraction. A
lot of progress has been made along these dimensions, but again, the target has
continued to move; as the size and complexity of typical software systems kept
increasing, organizational aspects of both the software product and the teams
building it began to dominate the software development process, in terms of
complexity, cost, and impact in general. This meant that software reuse
research needed to focus on ways to encode, package, and organize software
artifacts of a granularity that is bigger than the procedure or routine, and at a
stage of development that is earlier than code. Simultaneously, as the number
of stakeholders increased, and the financial stakes grew higher, there was a
need to focus on the organizational and economic aspects of reuse.

Since the 1970s, a number of organizations have recognized the potential for
software reuse to improve productivity and enhance the quality of the prod-
ucts being built. In the early 1980, the (U.S.) federal government in general,
and the Department of Defense in particular, have launched a number of
initiatives to help understand, organize, and promote software reuse, within its
software providers community, and throughout the software industry in
general. A number of organizations had embarked on software reuse initiatives
since the 1970s. The results varied widely, and in those cases where reuse was
successful, the approach used was sometimes not repeatable, not scalable, or
both, and its benefits were nonmeasurable. Nowadays, it is widely recognized
that in order to attain worthwhile, predictable, and repeatable reuse levels at
the scale of the enterprise, we must address software reuse at three levels:

* A set of techniques for developing and packaging high-quality software
artifacts that are widely applicable, and cost-effectively usable

* An organization that has the mandate, the discipline, the skills, and the
resources for producing, consuming, and managing a shared repository of
reusable artifacts

PREFACE

e A set of control and management tools for planning, controlling, and
evaluating the degree to which such an organization attained its
objectives

This book covers all three sets of issues, and the breadth and depth of cover-
age that we strove for in all three areas has made this book worth writing and
we should hope will make it worth purchasing, and perhaps even reading!

There has been much research, and a growing body of codified practical
knowledge in all three areas. However, the three areas have not attained the
same level of maturity, and the contents of this book reflect that reality.
Perhaps the most mature area is the technical field; research on reuse-
enabling software packaging technologies has been ongoing since the late
1960s, with practice increasingly closing the time lag—and sometimes revers-
ing it, by producing techniques and tools faster than researchers can concep-
tualize. Here the challenge is simply to keep up! In this area, we built on our
collective experiences from learning about, doing, consulting, mentoring, and
teaching various reuse-enabling technologies. For this knowledge to have a
shelf life that is longer than that of the latest fad, be it a language, tool, tech-
nique, or method, we have to look for, and try to codify, some of the funda-
mentals of modeling and programming for reuse. We hope that this material
will help complement the more practical skills and techniques that this book
contains, by tooling the “introspective professional” with some of the skills to
consume, if not develop, the next generation of techniques.

The organizational aspects of software reuse have received increasing
attention since the late 1980s, both as a distinct body of knowledge and in rela-
tion to more general issues such as process maturity frameworks and issues
related to process reengineering and change management. Input for organi-
zational models has come both from (1) synthesizing known success stories of
reuse organizations in the industry and (2) by analytically building such
models by drawing on general knowledge from process reengineering, risk
management, and change management. The result has been a set of more or
less elaborate organizational models drawn up by public (e.g., government),
parapublic [e.g., Software Engineering Institute (SEI)], and industry consortia
[e.g., Software Productivity Consortium (SPC)]. Each one of these—relatively
similar, and invariably commonsensical—models would warrant a full book in
its own right. We chose to synthesize this knowledge, and focus on the com-
monalities, but provide pointers to the individual sources, as well as to known
cases where such organizational models—or variants thereof—were success-
fully used.

The area of economic modeling of software reuse is perhaps the least
mature of the three. Central to economic modeling is the issue of reuse mea-
surement. Software measurement has, for a long time, been the lot of a small
community of determined software engineering researchers and professionals,
but not afforded the sexy status of the more mainstream research subjects. In
practice, it is one of the main reasons why most software organizations are

‘3.

PREFACE

not above level 1 of the capability maturity model (CMM); very few software
organizations measure software and the processes that produce it, and even
fewer know what to do with the data. The area of software measurement is
witnessing a boom of sorts, mostly in terms of software quality measurements,
and in relation to reengineering and maintenance. However, this boom is not
likely to benefit the economi¢ modeling of software reuse in the short run,
because in economic modeling, we are interested in functional size measure-
ments, to which software reuse adds layers of complexity. The material related
to the economic modeling of software reuse is a mixture of a tutorial and a
literature survey, although the models that we describe can be valuable simu-
lation tools for the reuse strategic planner and/or manager.

The intended audience for this book is technical. The material in this book
is either irrelevant or too detailed for most managers. There are a number of
excellent books out there whose contents and style of delivery is targeted at
the hurried manager who needs bullet points to include on next day’s plan
review meeting.

We strove to make this book useful to both the academic and the pro-
fessional by including foundational material as well as practical and tutorial
material. We have also included review questions and exercises to support the
teaching of the material in an academic (mostly) or professional training
setting.

The Professional. The material covered in this book will be useful to devel-
opers and technical managers and leaders. A developer can skip right up
to Part III, read Chapters 7 and 8, and then on to Part I'V, where the intro-
duction gives a detailed roadmap for Chapters 10-14. Chapters 15 and
17 in Part V are also a must read; Chapter 16 (on component retrieval)
may be skipped. Curious developers can read the one chapter in Part VII
(specialized forms of reuse) that is more relevant to their organizations
or projects. Technical managers would benefit from Parts I-III (except
Chapter 9), the last two chapters of Part IV (application frameworks,
Chapter 13; architectural frameworks, Chapter 14), and all of Part VII.
Technical leaders (e.g., architects) would benefit from Parts I and ITI-V
(possibly skipping some of the foundational material in Part IV: see the
introduction to that part), and the chapter that most corresponds to their
development practice from Part VII.

The Academic. This book is suitable for a sixth- or seventh-semester
advanced software design course. We recommend Chapter 1, Chapters 6
and 7 of Part I11, the entire Parts IV and V, and, depending on how much
general software engineering background the students has, perhaps
Chapter 19 (component-based software engineering). The book is also
recommended as a graduate course in computer science or management
information systems (MIS). For computer science students, Part VI could
be left out entirely, and some of the introductory material on object
oriented (OO) techniques (Chapter 9) could be skipped. For MIS

PREFACE

students, we could cover Parts I and 11, all of Part III except Chapter 9,
the introductions to Parts I'V and V (Chapters 10 and 15), and Parts VI
and VII. Some chapters include review questions and exercises. The
uppercase letters in Exercise sections indicate level of problem difficulty
or complexity: (A) easiest, (B) intermediate or medium difficulty, (C)
hardest or maximum difficulty, and (R) research problem.

We hope that you will have as much fun using the material in this book as
we have had writing it.

HAFrEDH MiLL, ALl MILI, SHERIF YACOUB, AND EDWARD ADDY
August 2000

Acronyms and Symbols

AA
ACT
ADL
ADN
AFMC
Al
AOP
API
APL
ARBV
ARC
ARR
ASL
ASSET
ATA
ATM
AWT
BIDM
BS
CAD
CARDS

CASE

assessment and assimilation

annual change traffic

architecture description language

adaptive dynamic network

Air Force (U.S.) Material Command

artificial intgelligence

aspect-oriented programming

application program interface

Array Programming Language

average return on book value

Army (U.S.) Rescue Center

average rate of return

application-specific language

Asset Source for Software Engineering Technology

architecture tradeoff analysis

Automated Teller Machine

abstract windowing toolkit

basic interoperability data model

behavioral sampling

computer-aided/assisted design

Comprehensive Approach to Reusable Defense Software
(proprietary to USAF-NASA)

computer-aided/assisted software engineering

Common abbreviations (i.e., CPU, IEEE, R&D, etc.) omitted here. Proprietary
definitions are capitalized.

ACRONYMS AND SYMBOLS

CBSD component-based software/system development
CBSE component-based software/system engineering
CCC credit card company

CCL Command Center Library

CCPL command and control product line(s)

CIM Center of Information Management

CLOS Common LISP (list processing) Object System (language)
CM Configuration Management (proprietary to SEI)
CMM Capability Maturity Model

COCOMO constructive cost model

COM Component Object Model (Microsoft)

CORBA Common Object Request Brokerage Architecture
COTS commercial off-the-shelf [product(s)]

CRA car rental agency

CRC cyclic redundancy check

CT coding and (unit) testing

CTA Computer Technology Associates

C2Al1 Command and Control Architecture Infrastructure
DADP domain analysis and design process

DARPA Defense Advanced Research Projects Agency
DBMS database management system

DCE distributed computing environment

DD detailed design

DII dynamic invocation interface

DISA Defense Information Systems Agency

DLL dynamically linked library

DM design modification

DSRS Defense Software Repository System

DSSA domain-specific software architecture

EAF effort adjustment factor

EJB Enterprise Java Beans

ESC Electronic Systems Center [U.S. Air Force (USAF)]
FAST family-oriented abstraction, specification, and translation
FIFO first in/first out

FODA feature-oriented domain analysis

4GL fourth-generation language

FSP full-time software person/programmer

GUI graphical user interface '

IC investment cost(s)

IDL interface definition language

M integration modification

IMS information management system

ITIOP Internet Inter-ORB Protocol

IRR internal rate of return

ISO International Standardization Organization

ACRONYMS AND SYMBOLS

IT information technology; integration testing
JDBC Java database connectivity

JIAWG Joint Integrated Avionics Working Group
JODA joint object-oriented domain analysis

KAPTUR knowledge acquisition for preservation of tradeoffs and
underlying rationales

KLOC kiloline(s) of code

LNCS Lecture Notes in Computer Science

LI library insertion

LM labor-month(s)

LMEFS Lockheed Martin Federal Systems

LMTDS Lockheed Martin Tactical Defense Systems
LOC Lines of code

MIL module interconnection language

MIS management information system

ML machine language

MVC model view conroller

NPLACE National Product Line Assessment Center
NPV net present value

NTT Nippon (Japan) Telegraph & Telephone Corporation
ODBC object database connectivity

ODM organization(al) domain modeling

OLE object linking and embedding

OMA Object Management Architecture (proprietary to OMG)
OMG Object Management Group

OMT object modeling technique

00 object orientation

ORB object request broker

ORRA organizational engineering for reuse assessment
OSI Open Systems Interconnect (protocol)

PASTA process and artifact state transition abstraction
PBV payback value

PCTE portable common tool interface

PD product design

PDL Program Design Language

PI profitability index

PLA product-line architecture

PLAF pluggable look and feel

PLE product-line engineering

PLP product-line practice

PRISM Portable Reusable Integrated Software Module
PROLOG programming in logic

PulSE Product-Line Software Engineering (proprietary to Fraunhofer
Institute for Experimental Software Engineering)
QA quality assurance

o8

ACRONYMS AND SYMBOLS

RA
RAASP

RBP
RCA
RCDE

RCM
RCR

RCWR

REBOOT
RIC
RICC
RLIG
RLPM
RMI
ROI
RPC
RSL
RwWP
SAAM
SA/SD
SAIC
SCAI
SCM
SD

SEI
SEL
SLA
SORT
SPARC
SPC
SQL
SRI
SRSC
STARS
SuU
SWSC
TCP/TP
UML
URL
V&V
VBX

requirements analysis

Reusable Ada (language) Avionics Sofware Package(s) (U.S.
Air Force)

relative blackbox price (default value 0.40; see Chapter 19).

relative cost of adaptation (default value 0.67; see Chapter 19).

relative cost of domain engineering (default value 0.20; see
Chapter 19)

reuse capability model

relative cost of reuse (of software) (default value 0.20; see
Chapter 19)

relative cost of writing for reuse (default value 0.15; see
Chapter 19)

reuse based on object-oriented techniques

Reuse Information Clearinghouse

Reusable Integrated Command Center (proprietary program)

Reuse Library Interoperability Group (also abbreviated RIG)

reuse library process model

remote method invocation

return on investment

remote procedure call

reusable software library (a, generic)

relative whitebox price (default value 0.20; see Chapter 19)

Software Architecture Analysis Method

Stucture Analysis/Design

Science Applications International Corporation

space command and control architectural infrastructure

service control manager

start date; standard deviation

Software Engineering Institute

Software Engineering Laboratory

savings & loan association (a, generic)

Software Optimization and Reuse Technology (NASA)

Scalable Processor Architecture

Software Productivity Consortium

Structured Query Language

Software Reuse Initiative (proprietary program)

software reuse support center

Software Technology for Adaptive and Reliable Systems

software understanding

Space and Warning Systems Center

Transmission Control Protocol/Internet Protocol

Unified Modeling/Medical Language

uniform resource locator

verification and validation

Visual Basic Controls (Microsoft)

ACRONYMS AND SYMBOLS

WAP Wireless Application Protocol

WVHTCF West Virginia High Technology Consortium Foundation

p(P) Cost of developing product P with reuse (see Chapter 19).
n(A) Cost of purchasing reusable asset A (see Chapter 19).

o(S) Cost of developing product S from scratch (see Chapter 19).
(W) Cost of (whitebox) reusing asset W (see Chapter 19).

B(B) Cost of (blackbox) reusing asset B (see Chapter 19).

1(S,B,W) Cost of integrating components S, B and W (see Chapter 19).
o(P) Labor overhead incurred by the development of project P as a

result of practicing software reuse

«10

Contents

PART |

INTRODUCTION
1 Software Reuse and Software Engineering

1.1 Concepts and Terms

1.2

1.3

1.4

111

A Definition of Software Reuse

1.1.2 Software Reuse: Potentials and Pitfalls

113

Exercises

Software Reuse Products

121

Reusable Assets

12.2 Reuse Libraries: Vertical versus Horizontal Sets

123

Exercises

Software Reuse Processes

131
1.3.2
133
1.34
1.3.5

Organizational Structures
Domain Engineering
Application Engineering
Corporate Oversight
Exercises

Software Reuse Paradigms

1.4.1

Paradigms for Software Retrieval

O NN NN W

—_
=]

o T o G S Gy SO IR N
[e S R

—_
~N

<11

CONTENTS

1.4.2 Paradigms for Software Adaptation
1.4.3 Paradigms for Software Composition
1.4.4 Exercises

1.5 Further Reading

State of the Art and the Practice

2.1 Software Reuse Management
2.1.1 State of the Art
2.1.2 State of the Practice
2.1.3 Perspectives
2.1.4 Exercises

2.2 Software Reuse Techniques
2.2.1 State of the Art
2.2.2 State of the Practice
2.2.3 Perspectives
2.2.4 Exercises

2.3 Software Reuse Initiatives
2.3.1 Software Reuse Libraries
2.3.2 Software Reuse Methodologies
2.3.3 Software Reuse Standards
2.3.4 Exercises

2.4 Further Reading

Aspects of Software Reuse

3.1 Organizational Aspects
3.1.1 Managerial Infrastructure
3.1.2 Technological Infrastructure
3.1.3 Reuse Introduction
3.14 Exercises

3.2 Technical Aspects
3.2.1 Domain Engineering Aspects
3.2.2 Component Engineering Aspects
3.2.3 Application Engineering Aspects
3.2.4 Exercises

3.3 Economic Aspects
3.3.1 Software Reuse Metrics
3.3.2 Software Reuse Cost Estimation

<12 -

17
19
19

20

22

22
22
24
26
27

27
27
31
32
33

33
33
36
41
42

42

45

45
45
46
46
47

47
47
48
48
49

49
49
49

34

PART 1l

3.3.3 Software Reuse Return on Investment

Further Reading

ORGANIZATIONAL ASPECTS

4 Software Reuse Organizations

4.1

4.2

43

Software Reuse Team Structures

4.1.1 Characteristic Features

4.12 Software Reuse Team Structures
4.1.3 Determining Factors

4.1.4 Exercises

Reuse Skills

42.1 Librarian

42.2 Reuse Manager

4.2.3 Domain Engineer
42.4 Application Engineer
4.2.5 Component Engineer
426 Exercises

Further Reading

5 Support Services

5.1
52
53
54

55
5.6
5.7
5.8

Configuration Management
Quality Assurance
Testing

Verification and Validation
5.4.1 Domain-Level Tasks
542 Correspondence Tasks
5.4.3 Communicating Results

Risk Management
Certification
Exercises

Further Reading

6 Institutionalizing Reuse

6.1

Organizational Readiness

CONTENTS

50
50

53

53
53
55
61
62

63

2R

NN

68

70
71

71
74
75
76

76
77
78
78

79
79

«13-

PART I

CONTENTS

6.2

6.3

6.4
6.5

Barriers to Reuse
6.2.1 Cultural

6.2.2 Managerial
6.2.3 Technological
6.2.4 Infrastructural

Overcoming the Barriers to Reuse
6.3.1 Executive Support

6.3.2 Training

6.3.3 Incentives

6.3.4 Incremental Approach
Exercises

Further Reading

DOMAIN ENGINEERING: BUILDING FOR REUSE

7 Building Reusable Assets: An Overview

7.1

7.2

7.3

7.4

Reusability
7.1.1 Usability
7.1.2 Usefulness

Acquiring Reusable Assets

7.2.1 Build versus Buy

7.2.2 Building Reusable Assets in House
7.2.3 Building Application Generators

Domain Engineering Lifecycles

7.3.1 Issues

7.3.2 A Sample of Domain Engineering Lifecycles
7.3.3 Summary

Summary and Discussion

Domain Analysis

8.1

8.2

+ 14 -

Basic Concepts

8.1.1 A Domain

8.1.2 Domain Analysis
8.1.3 Domain Models
8.1.4 Exercises

Domain Scoping
8.2.1 Scoping Criteria

80
88
88
88
89

89
89
89
90
90

93
93

97

98
98
104

106
107
107
110

113
113
117
120

122

124

125
125
126
127
128

128
128

