1/ / HSh W H A MR R M R

FUFE LA

— P 5L ﬂi(%wﬁﬁ)

awammw‘"’

Programming Languages
Prm' “ﬂ%&"mﬂﬁ. Practice

~ Secon ‘Eﬁiﬂé‘*

1IHIBIG101 1000101117

1001011, 19181/
18116

A+

A

[£] Kenneth C. Louden *

momson () FF I ¥ & & 44

e B Publishing House of Electronics Industry
S r=r—T1 www.phei.com.cn

E5hH AL S A RS

Ef“ TIES [RIE 5L
(B2hR)

S (E&XR)

Programming Languages
Principles and Practice
Second Edition

[#] Kenneth C.Louden 3

T FIF & AR AL
Publishing House of Electronics Industry
JtE - BEUING

M EE T

FENE TERFIOHESH—RES, GERFRINETHEEMEL, W a4 RNET AR RIES .
RBAES BEKIESIITES LM, 28 T EFIEF MR ERAAENS, 8 TIES IR
L RAFIST RS LA 5TH R A IR

AHARTHENRHARL 24 WTUESM , K 5B & VIR ARXRRNSE S, haiits
NEWARSE. '

981-243-498-4

English reprint Copyright © 2003 by Thomson Learning and Publishing House of Electronics Industry.
Programming Languages: Principles and Practice, Second Edition by Kenneth C. Lounden, Copyright © 2003. First
published by Brooks/Cole, a division of Thomson Learning, Inc(www.thomsonlearningasia.com).

All Rights Reserved.

i

Authorized Reprint Edition by Thomson Learning and Publishing House of Electronics Industry. No part of this book

may be reproduced in any form without the express written permission of Thomson Learning and Publishing House
of Electronics Industry.)

A FHFCHEP R T Tk A AR ST MR SRR, REHIRE RS BEIFAT, AELUEM
I REH B RAE BT

AR 5 & RIS BEF: 01-2002-4545

BHBER&D (CIP) ¥

BFEOHES

Jr 3 5508 ~Programming Languages: Principles and Practice (%5 iR)/ (3) 3% (Louden,

K.C)F. ~dbat: B LR, 2003.1
(ESMTREELBLEHM RT])
ISBN 7-5053-8261-6

1.#8.. 1.5. NEBFES-EX IV. TPI2
PERARBIE CIPERE T (2002) % 0928075

it
B R &
HIRRAT:
7
&
B K
g

TR

JEFERFRER

BF LA AL hitp://www.phei.com.cn
EAGER T HER 173558 #E4%: 100036

. HHFERIE
: 787 x 980 1/16 Elgk. 4475 F¥. 1146 TF
: 2003 E 1 A1/ 20034E1 A% 1 REDRI

58.00 7T

REFSF T BB E S, R SRRH, FAOBESEBE, %%S/g’é&, HEAALLATHBER, B A
#,4%. (010) 68279077

i hi % PFA

21 AR S R 10FEEREREREF SR BREENS, WRAE S/ IRE K B K5
B, FEREMAWTO GHIAS R, HFr—ZE N EAMEE R —RIT A MR RESSHEY
BEEMESZ— BEERFAEATHALTNKSE SEE, BEEE ERE R R EBRE,

LA, EERESFHERIRE BRI F TSNS E R FENERNY, hEREZFH
-5 E PR RS, B PR B A B IEAE 2 B R R AR R 8 A B AMC 75 b FE 55 TR
B, DMERBEIE AN ERYGE EERRE# K,

BT T R FRE RS HEIMEF R BHER, BRHET “EINTENR S8 &
" A, REHMBRFRNEETT ., S5, BRE, BAARE IR, WE R IRRE
B, DEM AR R . REEW . RREZR AT XS B E7RR, 1R A hik i H hd
B XEEH KR FEENE S RS BN S5, Bk SRR
. BRESFEEAHE, RBIES | BIVAGRSSEA, S04 DRSS, RN, FoMIwE 4387 —
YO0 T BESUFREOR , A8 BIRRAS RIS SO R T B S50 , o 28 5 P 5 R (L 0 S SR R AR 114
LB BHERR AR o

P F el I, AT RHERGERE H SPE 45 AR A 7] HE BRI B RS 80bE , 4 Pearson Education 354 #
BHRER 57 - H/REE HARSER | BRE BT 200t B . SIBF K2 B % . 1S #b 10
VIS EEER RS R B 4, EH R - BHR Douglas E. Comer). BUEE - HTEMEN William
Stallings), Fe4E - B4F/K (Harvey M. Deitel). JLFIHT - FiZE (Uyless Black) %,

ABRBA LR B BE R &, RAOTAH TIHERE, bk disismEx s, 5
BRF, FWGERY . BEAY, WLKY ., MRET RS, EpR A BRiis.
EIRTRHERAR RS | BBEE T RS ELSRNHITHE TS 5 TR RFIHM A5 . 8%
MR TAE . AT ERA PHEIRZE A B TR0 1814, AR T ILHESE SR 2 H
[2 e S T

HEERFIEH MR . BHERREN TR, RS HM R, RO T KB BB TE,
WX TR EAM AT R ISIE; AT KA RI BV 0 WHHERR . B R AT A 4 3
T RSCHA B R, ROTES SEZEBRERM F FTRMBEES X, BT T8,

o, BATER 5 EAME L AR A R AR, At — o0 TS0 S FR R, 75 BAE R Fi 2 i
ROFY . S5, RIVEHREMES S ERBUTHEER, 7 KIS E 20 EIMEE b
MSEH, HRETENRIESA AR S PR R L5,

B Tl th it

£

P

(ZESE]

(=R

a8 s

5K B

HMHRERS

LR R
R B R+
R RAER S LEENEE
FJEE AR LARTTR AT

PEARRFAERERRRK . #d%

HERET IR SHARR IR
EPrfR SRS SEFRETEAE

FHERETTRIPE SRR R
FET B AR ZEEE I E RS FE

T E A R TR H4%
EERBHEARRR L FLE ., LTI

EEER AR S TR RER
EEgATREEAR L EAE

EREREIRESR PO EE . BREREHET
FEBYIA2ESHE . DETHHE SRR

E PR E AR AN 0% . AR
ﬁ?%ﬁﬁﬁ%%%&ﬁ%#@?%xMIﬁﬁﬁ

FRKFEE TR

Preface

T his book is an introduction to the broad field of programming lan-
guages. It combines a general presentation of principles with considerable
detail about many modern languages, including some of the newest func-
tional and object-oriented languages. Unlike many introductory texts, it
contains significant material on implementation issues, the theoretical
foundations of programming languages, and a large number of exercises.
All of these features make this text a useful bridge to compiler courses and
to the theoretical study of programming languages. However, it is a text
specifically designed for an advanced undergraduate programming lan-
guages survey course that covers most of the programming languages
requirements specified in the 2001 ACM/IEEE-CS Joint Curriculum Task
Force Report, and the CS8 course of the 1978 ACM Curriculum.

My goals in preparing this new edition are to bring the language-spe-
cific material in line with the changes in the popularity and use of pro-
gramming languages since the publication of the first edition in 1993, to
improve and expand the coverage in certain areas, and to improve the
presentation and usefulness of the examples and exercises, while retaining
as much of the original text and organization as possible.

Students are not expected to know any one particular language.
However, experience with at least one language is necessary. A certain
degree of “computational sophistication,” such as that provided by a
course in data structures and a discrete mathematics course, is also
expected. Major languages used in this edition include C, C++, Java,
Ada, ML, Haskell, Scheme, and Prolog; many other languages are dis-
cussed more briefly.

Overview and Organization

In most cases, each chapter largely is independent of the others without
artificially restricting the material in each. Cross references in the text
allow the student or instructor to fill in any gaps that might arise even if
a particular chapter or section is skipped.

Chapter 1 surveys the concepts studied in later chapters, and intro-
duces the different language paradigms with simple examples in typical
languages.

Chapters 2 and 3 provide overviews of the history of programming
languages and language design principles, respectively. Chapter 3 could
serve well as a culminating chapter for the book, but I find it arouses inter-
est in later topics when covered here.

Chapter 4 treats syntax in some detail, including the use of BNF,
EBNF, and syntax diagrams. A brief section views recursive definitions
(like BNF) as set equations to be solved, a view that recurs periodically
throughour the text. One section is devoted to recursive-descent parsing
and the use of parsing tools.

Chapters 5, 6, 7, and 8 cover the central semantic issues of pro-
gramming languages: declaration, allocation, evaluation; the symbol table
and runtime environment as semantic functions; data types and type
checking; procedure activation and parameter passing; and exceptions
and exception handling.

Chapter 9 gives an overview of modules and abstract data types,
including language mechanisms and equational, or algebraic, specification.

Chapters 10, 11, 12, and 13 address language paradigms, beginning
with the object-oriented paradigms in Chapter 10. I use Java to introduce
the concepts in this chapter. Individual sections feature C++ and
Smalltalk. Chapter 11 deals with the functional paradigm. Each of the
languages Scheme, ML, and Haskell are covered in some detail. This
chapter also introduces the lambda calculus and the theory of recursive
function definitions. Chapter 12, on logic programming, offers an
extended section on Prolog, and devotes one section to equational lan-
guages such as OBJ.

Chapter 13 introduces the three principal methods of formal seman-
tics: operational, denotational, and axiomatic. This is somewhat unique
among introductory texts in that it gives enough detail to provide a real
flavor for the methods.

Chapter 14 treats the major ways parallelism has been introduced
into programming languages: coroutines, threads, semaphores, monitors,
and message passing, with examples primarily from Java and Ada. Its final
section surveys recent efforts to introduce parallelism into LISP and
Prolog. :

Use as a Text

I'have used this text for more than ten years in my CS 152 classes of upper
division computer science majors and graduate students at San Jose State
University. I have taught the course using two completely different organ-
izations, which could loosely be called the “principles” approach and the
“paradigm” approach. Two suggested organizations of these approaches in
a semester-long course are as follow:

The principles approach: Chapters 1, 4, 5, 6, 7,8,and 9. If there is extra
time, Chapters 2 and 3.

The paradigm approach: Chapters 1, 10, 11, 12, 13, and 14 (not neces-
sarily in that order). If there is extra time, Chapters 2 and 3, or
selected topics from the remaining chapters.

In a two-semester or two-quarter sequence it should be possible to cover
most of the book.

Selected answers for many of the exercises at the end of each chap-
ter may be found at www.brookscole.com or on the author’s Web site,
www.cs.sjsu.edu/faculty/louden. Many are programming exercises (none
extremely long) in languages discussed in the text. Conceptual exercises
range from the short-answer type that test understanding of the material
to longer, essay-style exercises and challenging “thought” questions. A few
moments’ reflection should give the reader adequate insight into the
potential difficulty of a particular exercise. Further knowledge can be
gained by reading the on-line answers, which I treat as an extension of the
text and sometimes provide additional information beyond that required
to solve the problem. Occasionally the answer to an exercise on a partic-
ular language requires the reader to consult a language reference manual
or have knowledge of the language not specifically covered in the text.
Throughout the book I have tried to improve the usefulness of the code
examples by adding line numbers where appropriate, and by augmenting
many examples with main program drivers that allow them to be executed
to demonstrate their described behavior. All such examples, as well as a
number of others (in which, for space or other reasons, such extra code
was suppressed), are available through www.brookscole.com or the
author’s Web site listed above. These Web sites also contain links to free,
downloadable translators for all the major languages of the book, many of
which I have used to test the examples. Other materials may also be avail-

able.

Summary of Changes between
the First and Second Editions

In the first edition, I used examples from the most widely known impera-
tive languages, including C, Pascal, Ada, Modula-2, and FORTRAN, as
well as some of the less widely known languages representing other lan-
guage paradigms, such as Scheme, ML, Miranda, C+ +, Eiffel, Smalltalk,
and Prolog. The most extensive change in the current edition is the
replacement of Pascal and Modula-2 largely by C, C++, and Java in the
examples. Modula-2 has disappeared, except for a “historical” section in
Chapter 9, on ADTs; a few examples in Pascal remain. I also use Ada
quite a bit, especially for features that are not well represented in
C/C+ +/[Java (e.g., subranges, arrays and slices, name equivalence of dara
types). Java replaces Simula as the primary example in Chapter 10, on
object-oriented programming languages, and | eliminated the section on
Eiffel. I devote considerably more space to ML and Haskell in Chapter 11,
on functional languages, and I added ML examples liberally throughout
the book. Finally, I use Java threads as the Basic example of concurrency

in Chapter 14, on parallel programming languages. Additional significant
changes are as follows:

1 split off procedures and environments from the rest of the control
material, so Chapter 7 now treats control expressions and statements,
and the new Chapter 8 treats control procedures and environments.
I moved expressions from the end of Chapter 5, on basic semantics,
to the beginning of Chapter 7. Because in most cases some implicit
or explicit control is inherent in evaluating expressions, this topic fits
well with other control issues.

I include overloading with the symbol table material in Chapter 5,
because it essentially is a symbol table task to disambiguate over-
loaded identifiers. While this presents a “phase ‘order” problem with
Chapter 6, on data types—the type signature being the primary
attribute used in overload resolution—the amount of data type infor-
mation needed to understand overload resolution is not great, and
the material seems more natural presented in this way.

I'include parametric polymorphism with the discussion of type check-
ing in Chapter 6, in which I also give a more extensive account of
Hindley-Milner polymorphic type checking. Parametric poly-
mophism comes up again in Chapter 9 in discussing Ada packages,
and in Chapter 10 in discussing C++ class templates.

I rewrote Chapter 9 on ADTs and modules to emphasize modules a
bit more and changed its title to include modules. This topic is more
challenging than most to present concisely, because the design of
ADT and module mechanisms differs more widely among common
languages than any other feature except, possibly, concurrency mech-
anisms. [use ML and Ada as the major examples here, with some
additional material on C++ namespaces and Java packages. | defer
the use of classes to represent ADTs and modules to Chapter 10 on
object-oriented programming.

I do not mention the scripting languages, such as Perl, JavaScript,
and Tcl, extensively in this text (except for a brief section in Chapter
2). While the use of such languages is widespread and increasing, par-
ticularly for Web applications, and student interest in them is
intense, I still consider them somewhat too special-purpose for this
text. However, nothing would prevent the interested instructor from
providing examples in these languages of virtually every major lan-
guage feature.

I also do not cover any “visual” languages or component assembly
tools, such as Visual Basic or various JavaBean tools. My view is that
these “languages” are better studied in a GUI or software engineering
course. Similarly, I only mention the various markup languages such
as XML, SGML, and HTML, in passing.

Acknowledgments

I would like to thank all those persons too numerous to mention who,
over the years, have emailed me with comments, corrections, and sugges-
tions. I especially thank the reviewers of this edition for their many useful
suggestions and comments: Leonard M. Faltz of Arizona State University,
Jesse Yu of the College of St. Elizabeth, Mike Frazier of Abilene Christian
University, Ariel Ortiz Ramirez of ITESM Campus Estado de Mexico,
James J. Ball of Indiana State University, Samuel A. Rebelsky of Grinnell
College, and Arthur Fleck of the University of lowa.

[also thank Eran Yahav of Tel-Aviv University for reading and
commenting on Chapter 14 on concurrency, and Hamilton Richards of
the University of Texas for his comments and suggestions on survey
Chapter 1 and Chapter 11, on functional programming.

I remain grateful to the many students in my CS 152 sections at San
Jose State University for their direct and indirect contributions to this edi-
tion and to the previous edition; to my colleagues at San Jose State,
Michael Beeson, Cay Horstmann, and Vinh Phat, who read and com-
mented on individual chapters in the first edition; and to the reviewers of
that edition, Ray Fanselau of American River College, Larry Irwin of
Ohio University, Zane C. Motteler of California Polytechnic State
University, Tony P. Ng of the University of Illinois-Urbana, Rick Ruth of
Shippensburg University of Pennsylvania, and Ryan Stansifer of the
University of North Texas.

Of course, I alone am responsible for the shortcomings and errors in
this book. I am happy to receive reports of errors and any other comments
from readers at louden@cs.sjsu.edu.

I particularly thank Kallie Swanson, computer science editor at
Brooks/Cole, for her encouragement and patience during the seemingly
endless process of revision. A special thanks is owed to Marjorie
Schlaikjer, who first convinced me to write this book.

Finally, I give my thanks and appreciation, as ever, for the patience,
support, and love of my wife, Margreth, and my sons, Andrew and Robin.
Without you, much of this would never have happened.

.

FoE

FI3E

FAE

FI1E

LR

FIE

F10E

BE

B2

B1E

BXR#HR

g | %“ ... 1
Introduction
LT R R T e R R E LR LR R LR AR AL 34
History
TEZTETHET - veeeerevmreemmmereeneee e PP 55
Language Design Principles
e P PP ST P TP 77
Syntax
BECTE QL weveneeeessesesessee et h e s 125
Basic Semantics
e, 3. F RO YOO PO POV 189
Data Types
P | ——FEIRaNIEBA] coovereeerermsemserne e 260
Control | Expressions and Statements
P T —JFBHITRIE -crerrrrretren e 309
Control II Procedures and Environments
R B S R AR L oo 356
Abstract Data Types and Modules
T 7] X;I% B‘Jﬁ}:‘?‘lﬁﬂ‘ .. 409
Object—Oriented Programming
BRBIERERITIHIT -ovrerrrrerrer 471
Functional Programming
BBEEFIRFFIRTT crererererer 539
Logic Programming
FEFIE YL veereeereee e e 579

Formal Semantics

I = S = S P
Parallel Programming

BEHETCER cvvoveereeereoe ettt h ettt ettt ettt et et n s e enbe e teeteeeareeeans

Bibliography

%*5’[...

Index

Contents

1 Introduction 1

1.1 What Is a Programming Language? 2
1.2 Abstractions in Programming Languages 5
1.3 Computational Paradigms 13
1.4 Language Definition 20
1.5 Language Translation 22
1.6 Language Design 29
Exercises 30
Notes and References 33

2 History 34

2.1 Early History: The First Programmer 35
2.2 The 1950s: The First Programming Languages 37
2.3 The 1960s: An Explosion in Programming Languages
2.4 The 1970s: Simplicity, Abstraction, Study 42
2.5 The 1980s: New Directions and the Rise
of Object-Orientation 43
2.6 The 1990s: Consolidation, the Internet, Libraries,
and Scripting 46
2.7 The Future 49
Exercises 50
Notes and References 53

39

«11 -

3 Language Design Principles 55

3.1 History and Design Criteria 57

3.2 Efficiency 59

3.3 Regularity 60

3.4 Further Language Design Principles 63

3.5 C++: A Case Study in Language Design 68
Exercises 72
Notes and References 76

4 Syntax 77

4.1 Lexical Structure of Programming Languages 78
4.2 Context-Free Grammars and BNFs 83
4.3 Parse Trees and Abstract Syntax Trees 89
4.4 Ambiguity, Associativity, and Precedence 92
4.5 EBNFs and Syntax Diagrams 97
4.6 Parsing Techniques and Tools 101
4.7 Lexics versus Syntax versus Semantics 113
Exercises 115
Notes and References 123

5 Basic Semantics 125

5.1 Attributes, Binding, and Semantic Functions 126

5.2 Declarations, Blocks, and Scope 130

5.3 The Symbol Table 139

5.4 Name Resolution and Overloading 152

5.5 Allocation, Lifetimes, and the Environment 159

5.6 Variables and Constants 167

5.7 Aliases, Dangling References, and Garbage 174
Exercises 180

Notes and References 187

6 Data Types 189

6.1 Data Types and Type Information 192
6.2 Simple Types 197

6.3 Type Constructors 200
6.4 Type Nomenclature in Sample Languages 215
6.5 Type Equivalence 218
6.6 Type Checking 225
6.7 Type Conversion 231
6.8 Polymorphic Type Checking 235
6.9 Explicit Polymorphism 244
Exercises 250
Notes and References 258

7 Control I—Expressions and Statements 260

7.1 Expressions 262
7.2 Conditional Statements and Guards 270
7.3 Loops and Variation on WHILE 276
7.4 The GOTO Controversy 280
7.5 Exception Handling 282

Exercises 299

Notes and References 307

8 Control II—Procedures and Environments 309

8.1 Procedure Definition and Activation 311
8.2 Procedure Semantics 313
8.3 Parameter Passing Mechanisms 317
8.4 Procedure Environments, Activations, and Allocation 325
8.5 Dynamic Memory Management 340
8.6 Exception Handling and Environments 344
Exercises 346
Notes and References 355

9 Abstract Data Types and Modules 356

9.1 The Algebraic Specification of Abstract Data Types 359
9.2 Abstract Data Type Mechanisms and Modules 364

9.3 Separate Compilation in C, C++ Namespaces,
and Java Packages 368
9.4 Ada Packages 375
9.5 Modules in ML 381
9.6 Modules in Earlier Languages 385
9.7 Problems with Abstract Data Type Mechanisms 390
9.8 The Mathematics of Abstract Data Types 398
Exercises 402
Notes and Refezences 407

10 Object-Oriented Programming 409

10.1 Software Reuse and Independence 410

10.2 Java: Objects, Classes, and Methods 413

10.3 Inheritance 419

10.4 Dynamic Binding 431

10.5 C+4 434

10.6 Smalltalk 446

10.7 Design Issues in Object-Oriented Languages 452

10.8 Implementation Issues in Object-Oriented Languages 456
Exercises 462
Notes and References 470

11 Functional Programming 471

11.1 Programs as Functions 473
11.2 Functional Programming in an Imperative Language 476
11.3 Scheme: A Dialect of LISP 481
11.4 ML: Funcrional Programming with Static Typing 494
11.5 ° Delayed Evaluation 507
11.6 Haskell—A Fully-Curried Lazy Language with Overloading 512
11.7 The Mathematics of Functional Programming I:

Recursive Functions 520
11.8 The Mathematics of Functional Programming 1I:

Lambda Calculus 524

Exercises 529

Notes and References 537

12 Logic Programming 539

12.1 Logic and Logic Programs 541

12.2 Horn Clauses 545

12.3 Resolution and Unification 548

12.4 The Language Prolog 552

12.5 Problems with Logic Programming 563

12.6 Extending Logic Programming: Constraint Logic Programming
and Equational Systems 568
Exercises 572

Notes and References 577

13 Formal Semantics 579

13.1 A Sample Small Language 581

13.2 Operational Semantics 585

13.3 Denotational Semantics 595

13.4 Axiomatic Semantics 604

13.5 Proofs of Program Correctness 611
Exercises 614

Notes and References 619

14 Parallel Programming 620

14.1 Introduction to Parallel Processing 622

14.2 Parallel Processing and Programming Languages 626

14.3 Threads 634

14.4 Semaphores 643

14.5 Monitors 648

14.6 Message Passing 654

14.7 Parallelism in Non-Imperative Languages 660
Exercises 665
Notes and References 671

Bibliography 673
Index 685

<15 -

