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Preface

T his book is an introduction to the broad field of programming lan-
guages. It combines a general presentation of principles with considerable
detail about many modern languages, including some of the newest func-
tional and object-oriented languages. Unlike many introductory texts, it
contains significant material on implementation issues, the theoretical
foundations of programming languages, and a large number of exercises.
All of these features make this text a useful bridge to compiler courses and
to the theoretical study of programming languages. However, it is a text
specifically designed for an advanced undergraduate programming lan-
guages survey course that covers most of the programming languages
requirements specified in the 2001 ACM/IEEE-CS Joint Curriculum Task
Force Report, and the CS8 course of the 1978 ACM Curriculum.

My goals in preparing this new edition are to bring the language-spe-
cific material in line with the changes in the popularity and use of pro-
gramming languages since the publication of the first edition in 1993, to
improve and expand the coverage in certain areas, and to improve the
presentation and usefulness of the examples and exercises, while retaining
as much of the original text and organization as possible.

Students are not expected to know any one particular language.
However, experience with at least one language is necessary. A certain
degree of “computational sophistication,” such as that provided by a
course in data structures and a discrete mathematics course, is also
expected. Major languages used in this edition include C, C++, Java,
Ada, ML, Haskell, Scheme, and Prolog; many other languages are dis-
cussed more briefly.

Overview and Organization

In most cases, each chapter largely is independent of the others without
artificially restricting the material in each. Cross references in the text
allow the student or instructor to fill in any gaps that might arise even if
a particular chapter or section is skipped.



Chapter 1 surveys the concepts studied in later chapters, and intro-
duces the different language paradigms with simple examples in typical
languages.

Chapters 2 and 3 provide overviews of the history of programming
languages and language design principles, respectively. Chapter 3 could
serve well as a culminating chapter for the book, but I find it arouses inter-
est in later topics when covered here.

Chapter 4 treats syntax in some detail, including the use of BNF,
EBNF, and syntax diagrams. A brief section views recursive definitions
(like BNF) as set equations to be solved, a view that recurs periodically
throughour the text. One section is devoted to recursive-descent parsing
and the use of parsing tools.

Chapters 5, 6, 7, and 8 cover the central semantic issues of pro-
gramming languages: declaration, allocation, evaluation; the symbol table
and runtime environment as semantic functions; data types and type
checking; procedure activation and parameter passing; and exceptions
and exception handling.

Chapter 9 gives an overview of modules and abstract data types,
including language mechanisms and equational, or algebraic, specification.

Chapters 10, 11, 12, and 13 address language paradigms, beginning
with the object-oriented paradigms in Chapter 10. I use Java to introduce
the concepts in this chapter. Individual sections feature C++ and
Smalltalk. Chapter 11 deals with the functional paradigm. Each of the
languages Scheme, ML, and Haskell are covered in some detail. This
chapter also introduces the lambda calculus and the theory of recursive
function definitions. Chapter 12, on logic programming, offers an
extended section on Prolog, and devotes one section to equational lan-
guages such as OBJ.

Chapter 13 introduces the three principal methods of formal seman-
tics: operational, denotational, and axiomatic. This is somewhat unique
among introductory texts in that it gives enough detail to provide a real
flavor for the methods.

Chapter 14 treats the major ways parallelism has been introduced
into programming languages: coroutines, threads, semaphores, monitors,
and message passing, with examples primarily from Java and Ada. Its final
section surveys recent efforts to introduce parallelism into LISP and
Prolog. :

Use as a Text

I'have used this text for more than ten years in my CS 152 classes of upper
division computer science majors and graduate students at San Jose State
University. I have taught the course using two completely different organ-
izations, which could loosely be called the “principles” approach and the
“paradigm” approach. Two suggested organizations of these approaches in
a semester-long course are as follow:

The principles approach: Chapters 1, 4, 5, 6, 7,8,and 9. If there is extra
time, Chapters 2 and 3.



The paradigm approach: Chapters 1, 10, 11, 12, 13, and 14 (not neces-
sarily in that order). If there is extra time, Chapters 2 and 3, or
selected topics from the remaining chapters.

In a two-semester or two-quarter sequence it should be possible to cover
most of the book.

Selected answers for many of the exercises at the end of each chap-
ter may be found at www.brookscole.com or on the author’s Web site,
www.cs.sjsu.edu/faculty/louden. Many are programming exercises (none
extremely long) in languages discussed in the text. Conceptual exercises
range from the short-answer type that test understanding of the material
to longer, essay-style exercises and challenging “thought” questions. A few
moments’ reflection should give the reader adequate insight into the
potential difficulty of a particular exercise. Further knowledge can be
gained by reading the on-line answers, which I treat as an extension of the
text and sometimes provide additional information beyond that required
to solve the problem. Occasionally the answer to an exercise on a partic-
ular language requires the reader to consult a language reference manual
or have knowledge of the language not specifically covered in the text.
Throughout the book I have tried to improve the usefulness of the code
examples by adding line numbers where appropriate, and by augmenting
many examples with main program drivers that allow them to be executed
to demonstrate their described behavior. All such examples, as well as a
number of others (in which, for space or other reasons, such extra code
was suppressed), are available through www.brookscole.com or the
author’s Web site listed above. These Web sites also contain links to free,
downloadable translators for all the major languages of the book, many of
which I have used to test the examples. Other materials may also be avail-

able.

Summary of Changes between
the First and Second Editions

In the first edition, I used examples from the most widely known impera-
tive languages, including C, Pascal, Ada, Modula-2, and FORTRAN, as
well as some of the less widely known languages representing other lan-
guage paradigms, such as Scheme, ML, Miranda, C+ +, Eiffel, Smalltalk,
and Prolog. The most extensive change in the current edition is the
replacement of Pascal and Modula-2 largely by C, C++, and Java in the
examples. Modula-2 has disappeared, except for a “historical” section in
Chapter 9, on ADTs; a few examples in Pascal remain. I also use Ada
quite a bit, especially for features that are not well represented in
C/C+ +/[Java (e.g., subranges, arrays and slices, name equivalence of dara
types). Java replaces Simula as the primary example in Chapter 10, on
object-oriented programming languages, and | eliminated the section on
Eiffel. I devote considerably more space to ML and Haskell in Chapter 11,
on functional languages, and I added ML examples liberally throughout
the book. Finally, I use Java threads as the Basic example of concurrency



in Chapter 14, on parallel programming languages. Additional significant
changes are as follows:

1 split off procedures and environments from the rest of the control
material, so Chapter 7 now treats control expressions and statements,
and the new Chapter 8 treats control procedures and environments.
I moved expressions from the end of Chapter 5, on basic semantics,
to the beginning of Chapter 7. Because in most cases some implicit
or explicit control is inherent in evaluating expressions, this topic fits
well with other control issues.

I include overloading with the symbol table material in Chapter 5,
because it essentially is a symbol table task to disambiguate over-
loaded identifiers. While this presents a “phase ‘order” problem with
Chapter 6, on data types—the type signature being the primary
attribute used in overload resolution—the amount of data type infor-
mation needed to understand overload resolution is not great, and
the material seems more natural presented in this way.

I'include parametric polymorphism with the discussion of type check-
ing in Chapter 6, in which I also give a more extensive account of
Hindley-Milner polymorphic type checking. Parametric poly-
mophism comes up again in Chapter 9 in discussing Ada packages,
and in Chapter 10 in discussing C++ class templates.

I rewrote Chapter 9 on ADTs and modules to emphasize modules a
bit more and changed its title to include modules. This topic is more
challenging than most to present concisely, because the design of
ADT and module mechanisms differs more widely among common
languages than any other feature except, possibly, concurrency mech-
anisms. [ use ML and Ada as the major examples here, with some
additional material on C++ namespaces and Java packages. | defer
the use of classes to represent ADTs and modules to Chapter 10 on
object-oriented programming.

I do not mention the scripting languages, such as Perl, JavaScript,
and Tcl, extensively in this text (except for a brief section in Chapter
2). While the use of such languages is widespread and increasing, par-
ticularly for Web applications, and student interest in them is
intense, I still consider them somewhat too special-purpose for this
text. However, nothing would prevent the interested instructor from
providing examples in these languages of virtually every major lan-
guage feature.

I also do not cover any “visual” languages or component assembly
tools, such as Visual Basic or various JavaBean tools. My view is that
these “languages” are better studied in a GUI or software engineering
course. Similarly, I only mention the various markup languages such
as XML, SGML, and HTML, in passing.
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