jAVA "".E =/ EDhR

Algorithms in Java
Yarts 1-4, 3e

I Robert Sedgewick =

WITH JAVA CONSULTING BY MICHAEL SCHIDLOWSKY

B XRFHRM

BERZEME

Java &H &=

SO (3 MG 381 4
[3€] Robert Sedgewick ¥

BEXE H MR

- Jbut .

N

(Java Hix) £ENBT A4S BEENTENEGE Java PRINAMER, 2PE2 3%, B
| BHARTEESES (5139, BIEgh (280, HFEEE (B35 MEREE
4 F41).

EBL Java EEHERNEEREES, HTER. FTHA. MEREENM AR
WREMEM AR EY, WA IEERARSE.

EISBN: 0-201-36120-5

Algorithms in Java, Third Edition, Part 1-4

Robert Sedgewick

Copyright © 2003 by Pearson Education, Inc.

Original English language edition published by Pearson Education, Inc.
All right reserved.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

MRFpEARICREEAN (FEETEES. RIMGHTERAEEGBHX)
WHERAT.

AP HENEHE Pearson Education GEEH B HIRER) BB AIRE, iR
BETISHE,

EtERHHNBEENESEEIES: BF 01-2003-0548 S

EHERSRE (CIP) BiE
Java®¥h. B 1% Algorithms inJava: FE 3R/ () FERTE. ZHR.
—db5t: FHHEAEHRME, 2003
ISBN 7-302-06375-3
[.J. 1.7 ILJAVAESE—HEFE—FL V.TP312
FERAEFE CIP $EREF (2003) % 013033 5

HORR F . B (AR SR R BERE iR 100084)
hitp;//www. tup. com. cn
hup://www. tup. tsinghua. edu. cn

RERE: AR

ORI & deam Lt eI

£ 17 B FEHESEIEETH

s Z: 787 x960 1/16 EfI%: 48

AR W 2003 4E3 A TR 2003 £ 3 B L IKETRI
3 £, ISBN 7-302-06375-3/TP - 4810

El %7. 0001 ~3000

£ fr: 68.00 T

Preface

HIS BOOK IS the first of three volumes that are intended to

survey the most important computer algorithms in use today.
This first volume (Parts 1-4) covers fundamental concepts (Part 1),
data structures (Part 2), sorting algorithms (Part 3), and searching
algorithms (Part 4); the second volume (Part 5} covers graphs and
graph algorithms; and the (yet to be published) third volume (Parts
6-8) covers strings (Part 6), computational geometry (Part 7), and
advanced algorithms and applications (Part 8).

The books are useful as texts early in the computer science cur-
riculum, after students have acquired basic programming skills and
familiarity with computer systems, but before they have taken spe-
cialized courses in advanced areas of computer science or computer
applications. The books also are useful for self-study or as a refer-
ence for people engaged in the development of computer systems or
applications programs because they contain implementations of useful
algorithms and detailed information on these algorithms’ performance
characteristics. The broad perspective taken makes the series an ap-
propriate introduction to the field.

Together the three volumes comprise the Third Edition of a book
that has been widely used by students and programmers around the
world for many years. I have completely rewritten the text for this
edition, and I have added thousands of new exercises, hundreds of
new figures, dozens of new programs, and detailed commentary on all
the figures and programs. This new material provides both coverage of
new topics and fuller explanations of many of the classic algorithms. A
new emphasis on abstract data types throughout the books makes the
programs more broadly useful and relevant in modern object-oriented
programming environments. People who have read previous editions
will find a wealth of new information throughout; all readers will
find a wealth of pedagogical material that provides effective access to
essential concepts.

i

iv

PREFACE

These books are not just for programmers and computer science
students. Everyone who uses a computer wants it to run faster or to
solve larger problems. The algorithms that we consider represent a
body of knowledge developed during the last 50 years that is the basis
for the efficient use of the computer for a broad variety of applications,
From N-body simulation problems in physics to genetic-sequencing
problems in molecular biology, the basic methods described here have
become essential in scientific research; and from database systems to
Internet search engines, they have become essential parts of modern
software systems. As the scope of computer applications becomes more
widespread, so grows the impact of basic algorithms. The goal of this
book is to serve as a resource so that students and professionals can
know and make intelligent use of these fundamental algorithms as the
need arises in whatever computer application they might undertake.

Scope

This book, Algorithms in Java, Third Edition, Parts 1-4, contains 16
chapters grouped into four major parts: fundamentals, data structures,
sorting, and searching. The descriptions here are intended to give
readers an understanding of the basic properties of as broad a range
of fundamental algorithms as possible. The algorithms described here
have found widespread use for years, and represent an essential body
of knowledge for both the practicing programmer and the computer-
science student. The second volume is devoted to graph algorithms,
and the third consists of four additional parts that cover strings, geom-
etry, and advanced topics. My primary goal in developing these books
has been to bring together fundamental methods from these areas, to
provide access to the best methods known for solving problems by
computer.

You will most appreciate the material here if you have had one
or two previous courses in computer science or have had equivalent
programming experience: one course in programming in a high-level
language such as Java, C, or C++, and perhaps another course that
teaches fundamental concepts of programming systems. This book
is thus intended for anyone conversant with a modern programming
language and with the basic features of modern computer systems.

References that might help to fill in gaps in your background are
suggested in the text.

Most of the mathematical material supporting the analytic results
is self-contained (or is labeled as beyond the scope of this book), so
little specific preparation in mathematics is required for the bulk of the
book, although mathematical maturity is definitely helpful.

Use in the Curriculum

There is a great deal of flexibility in how the material here can be
taught, depending on the taste of the instructor and the preparation
of the students. There is sufficient coverage of basic material for the
book to be used to teach data structures to beginners, and there is
sufficient detail and coverage of advanced material for the book to
be used to teach the design and analysis of algorithms to upper-level
students. Some instructors may wish to emphasize implementations
and practical concerns; others may wish to emphasize analysis and
theoretical concepts.

An elementary course on data structures and algorithms might
emphasize the basic data structures in Part 2 and their use in the
implementations in Parts 3 and 4. A course on design and analysis of
algorithms might emphasize the fundamental material in Part 1 and
Chapter 5, then study the ways in which the algorithms in Parts 3
and 4 achieve good asymptotic performance. A course on software
engineering might omit the mathematical and advanced algorithmic
material, and emphasize how to integrate the implementations given
here into large programs or systems. A course on algorithms might
take a survey approach and introduce concepts from all these areas.

Earlier editions of this book that are based on other programming
languages have been used at scores of colleges and universities as a text
for the second or third course in computer science and as supplemental
reading for other courses. At Princeton, our experience has been that
the breadth of coverage of material in this book provides our majors
with an introduction to computer science that can be expanded on
in later courses on analysis of algorithms, systems programming, and
theoretical computer science, while providing the growing group of
students from other disciplines with a large set of techniques that these
people can put to good use immediately.

vi

PREFACE

The exercises—nearly all of which are new to this third edition—
fall into several types. Some are intended to test understanding of ma-
terial in the text, and simply ask readers to work through an example
or to apply concepts described in the text. Others involve implement-
ing and putting together the algorithms, or running empirical studies
to compare variants of the algorithms and to learn their properties.
Still others are a repository for important information at a level of
detail that is not appropriate for the text. Reading and thinking about
the exercises will pay dividends for every reader.

Algorithms of Practical Use

Anyone wanting to use a computer more effectively can use this book
for reference or for self-study. People with programming experience
can find information on specific topics throughout the book. To a large
extent, you can read the individual chapters in the book independently
of the others, although, in some cases, algorithms in one chapter make
use of methods from a previous chapter.

The orientation of the book is to study algorithms likely to be of
practical use. The book provides information about the tools of the
trade to the point that readers can confidently implement, debug, and
put algorithms to work to solve a problem or to provide functionality
in an application. Full implementations of the methods discussed are
included, as are descriptions of the operations of these programs on a
consistent set of examples.

Because we work with real code, rather than write pseudo-code,
you can put the programs to practical use quickly. Program listings
are available from the book’s home page. You can use these working
programs in many ways to help you study algorithms. Read them
to check your understanding of the details of an algorithm, or to
see one way to handle initializations, boundary conditions, and other
awkward situations that often pose programming challenges. Run
them to see the algorithms in action, to study performance empirically
and check your results against the tables in the book, or to try your
own modifications.

Characteristics of the algorithms and of the situations in which
they might be useful are discussed in detail. Connections to the analysis
of algorithms and theoretical computer science are developed in con-

text. When appropriate, empirical and analytic results are presented
to illustrate why certain algorithms are preferred. When interesting,
the relationship of the practical algorithms being discussed to purely
theoretical resuits is described. Specific information on performance
characteristics of algorithms and implementations is synthesized, en-
capsulated, and discussed throughout the book.

Programming Language

The programming language used for all of the implementations is Java.
The programs use a wide range of standard Java idioms, and the text
includes concise descriptions of each construct.

Mike Schidlowsky and I developed a style of Java programming
based on abstract data types that we feel is an effective way to present
the algorithms and data structures as real programs. We have striven
for elegant, compact, efficient, and portable implementations. The
style is consistent whenever possible, so programs that are similar
look similar.

For many of the algorithms in this book, the similarities hold re-
gardless of the language: Quicksort is quicksort (to pick one prominent
example), whether expressed in Ada, Algol-60, Basic, C, C++, Fortran,
Java, Mesa, Modula-3, Pascal, PostScript, Smalltalk, or countless other
programming languages and environments where it has proved to be
an effective sorting method. On the one hand, our code is informed by
experience with implementing algorithms in these and numerous other
languages (C and C++ versions of this book are also available); on
the other hand, some of the properties of some of these languages are
informed by their designers’ experience with some of the algorithms
and data structures that we consider in this book.

Chapter 1 constitutes a detailed example of this approach to de-
veloping efficient Java implementations of our algorithms, and Chapter
2 describes our approach to analyzing them. Chapters 3 and 4 are de-
voted to describing and justifying the basic mechanisms that we use
for data type and ADT implementations. These four chapters set the
stage for the rest of the book.

vii

vii

PREFACE

Acknowledgments

Many people gave me helpful feedback on earlier versions of this book.
In particular, hundreds of students at Princeton and Brown have suf-
fered through preliminary drafts over the years. Special thanks are due
to Trina Avery and Tom Freeman for their help in producing the first
edition; to Janet Incerpi for her creativity and ingenuity in persuading
our early and primitive digital computerized typesetting hardware and
software to produce the first edition; to Marc Brown for his part in
the algorithm visualization research that was the genesis of so many
of the figures in the book; and to Dave Hanson and Andrew Appel
for their willingness to answer all of my questions about programming
languages. I would also like to thank the many readers who have pro-
vided me with comments about various editions, including Guy Almes,
Jon Bentley, Marc Brown, Jay Gischer, Allan Heydon, Kennedy Lemke,
Udi Manber, Dana Richards, John Reif, M. Rosenfeld, Stephen Seid-
man, Michael Quinn, and William Ward.

To produce this new edition, [have had the pleasure of working
with Peter Gordon and Helen Goldstein at Addison-Wesley, who have
patiently shepherded this project as it has evolved. It has also been
my pleasure to work with several other members of the professional
staff at Addison-Wesley. The nature of this project made the book a
somewhat unusual challenge for many of them, and I much appreciate
their forbearance. In particular, Marilyn Rash did an outstanding job
managing the book’s production within a tightly compressed schedule.

I have gained three new mentors in writing this book, and partic-
ularly want to express my appreciation to them. First, Steve Summit
carefully checked early versions of the manuscript on a technical level
and provided me with literally thousands of detailed comments, partic-
ularly on the programs. Steve clearly understood my goal of providing
elegant, efficient, and effective implementations, and his comments not
only helped me to provide a measure of consistency across the imple-
mentations, but also helped me to improve many of them substantially.
Second, Lyn Dupré also provided me with thousands of detailed com-
ments on the manuscript, which were invaluable in helping me not only
to correct and avoid grammatical errors, but also—more important—
to find a consistent and coherent writing style that helps bind together
the daunting mass of technical material here. Third, Chris Van Wyk,

in a long series of spirited electronic mail exchanges, patiently de-
fended the basic precepts of object-oriented programming and helped
me develop a style of coding that exhibits the algorithms with clar-
ity and precision while still taking advantage of what object-oriented
programming has to offer. The basic approach that we developed for
the C++ version of this book has substantially influenced the Java code
here and will certainly influence future volumes in both languages (and
C as well). I am extremely grateful for the opportunity to learn from
Steve, Lyn, and Chris—their input was vital in the development of this
book.

Much of what I have written here I have learned from the teaching
and writings of Don Knuth, my advisor at Stanford. Although Don had
no direct influence on this work, his presence may be felt in the book,
for it was he who put the study of algorithms on the scientific footing
that makes a work such as this possible. My friend and colleague
Philippe Flajolet, who has been a major force in the development of
the analysis of algorithms as a mature research area, has had a similar
influence on this work.

I am deeply thankful for the support of Princeton University,
Brown University, and the Institut National de Recherche en Informa-
tique et Automatique (INRIA), where I did most of the work on the
book; and of the Institute for Defense Analyses and the Xerox Palo
Alto Research Center, where I did some work on the book while visit-
ing. Many parts of the book are dependent on research that has been
generously supported by the National Science Foundation and the Of-
fice of Naval Research. Finally, I thank Bill Bowen, Aaron Lemonick,
and Neil Rudenstine for their support in building an academic envi-
ronment at Princeton in which I was able to prepare this book, despite
my numerous other responsibilities.

Robert Sedgewick

Marly-le-Roi, France, 1983
Princeton, New Jersey, 1990, 1992
Jamestown, Rhode Island, 1997
Princeton, New Jersey, 1998, 2002

x

PREFACE

Java Consultant’s Preface

In the past decade, Java has become the language of choice for a
variety of applications. But Java developers have found themselves
repeatedly referring to references such as Sedgewick’s Algorithms in C
for solutions to common programming problems. There has long been
an empty space on the bookshelf for a comparable reference work for
Java; this book is here to fill that space.

We wrote the sample programs as utility methods to be used in
a variety of contexts. To that end, we did not use the Java package
mechanism. To focus on the algorithms at hand (and to expose the
algorithmic basis of many fundamental library classes), we avoided
the standard Java library in favor of more fundamental types. Proper
error checking and other defensive practices would both substantially
increase the amount of code and distract the reader from the core
algorithms. Developers should introduce such code when using the
programs in larger applications.

Although the algorithms we present are language independent,
we have paid close attention to Java-specific performance issues. The
timings throughout the book are provided as one context for compar-
ing algorithms, and will vary depending on the virtual machine. As
Java environments evolve, programs will perform as fast as natively
compiled code, but such optimizations will not change the perfor-
mance of algorithms relative to one another. We provide the timings
as a useful reference for such comparisons.

I would like to thank Mike Zamansky, for his mentorship and
devotion to the teaching of computer science, and Daniel Chaskes,
Jason Sanders, and James Percy, for their unwavering support. Iwould
also like to thank my family for their support and for the computer
that bore my first programs. Bringing together Java with the classic
algorithms of computer science was an exciting endeavor for which I
am very grateful. Thank you, Bob, for the opportunity to do so.

Michael Schidlowsky
Oakland Gardens, New York, 2002

To Adam, Andrew, Brett, Robbie,
and especially Linda

Notes on Exercises

Classifying exercises is an activity fraught with peril because readers
of a book such as this come to the material with various levels of
knowledge and experience. Nonetheless, guidance is appropriate, so
many of the exercises carry one of four annotations to help you decide
how to approach them.

Exercises that test your understanding of the material are marked
with an open triangle, as follows:

©9.57 Give the binomial queue that results when the keys EASY
QUE STION are inserted into an initially empty binomial queue.
Most often, such exercises relate directly to examples in the text. They
should present no special difficulty, but working them might teach you
a fact or concept that may have eluded you when you read the text.
Exercises that add new and thought-provoking information to the
material are marked with an open circle, as follows:

0 14.20 Write a program that inserts N random integers into a
table of size N/100 using separate chaining, then finds the length
of the shortest and longest lists, for N = 10%, 10*, 10°, and 10°.
Such exercises encourage you to think about an important concept
that is related to the material in the text, or to answer a question that
~ may have occurred to you when you read the text. You may find it
worthwhile to read these exercises, even if you do not have the time to
work them through.
Exercises that are intended to challenge you are marked with a black
dot, as follows:

©8.46 Suppose that mergesort is implemented to split the file at
a random position, rather than exactly in the middle. How many
comparisons are used by such a method to sort N elements, on
the average?
Such exercises may require a substantial amount of time to complete,
depending on your experience. Generally, the most productive ap-
proach is to work on them in a few different sittings.
A few exercises that are extremely difficult (by comparison with
most others) are marked with two black dots, as follows:

e 15.29 Prove that the height of a trie built from N random bit-
strings is about 21g N.

xifi

xiv

These exercises are similar to questions that might be addressed in the
research literature, but the material in the book may prepare you to
enjoy trying to solve them (and perhaps succeeding).

The annotations are intended to be neutral with respect to your
programming and mathematical ability. Those exercises that require
expertise in programming or in mathematical analysis are self-evident.
All readers are encouraged to test their understanding of the algorithms
by implementing them. Still, an exercise such as this one is straight-
forward for a practicing programmer or a student in a programming
course, but may require substantial work for someone who has not
recently programmed:

1.23 Modify Program 1.4 to generate random pairs of integers
between 0 and N — 1 instead of reading them from standard input,
and to loop until N — 1 union operations have been performed.
Run your program for N = 10%, 10%, 10°, and 10%and print out
the total number of edges generated for each value of N.

In a similar vein, all readers are encouraged to strive to appreciate
the analytic underpinnings of our knowledge about properties of al-
gorithms. Still, an exercise such as this one is straightforward for a
scientist or a student in a discrete mathematics course, but may require
substantial work for someone who has not recently done mathematical
analysis:

1.13 Compute the average distance from a node to the root in
a worst-case tree of 2" nodes built by the weighted quick-union
algorithm.

There are far too many exercises for you to read and assimilate
them all; my hope is that there are enough exercises here to stimulate
you to strive to come to a broader understanding on the topics that
interest you than you can glean by simply reading the text.

Contents

Fundamentals

Chapter 1. Introduction 3

1.1 Algorithms - 4

1.2 A Sample Problem: Connectivity - 7
1.3 Union-Find Algorithms - 11

1.4 Perspective - 22

1.5 Summary of Topics - 24

Chapter 2. Principles of Algorithm Analysis 27

2.1 Implementation and Empirical Analysis - 28
2.2 Analysis of Algorithms - 33

2.3 Growth of Functions - 36

2.4 Big-Oh Notation - 44

2.5 Basic Recurrences - 49

2.6 Examples of Algorithm Analysis - 53

2.7 Guarantees, Predictions, and Limitations - 60

xvi

Data Structures

CONTENTS

Chapter 3. Elementary Data Structures

3.1 Building Blocks - 70

3.2 Arrays - 84

3.3 Linked Lists - 91

3.4 Elementary List Processing - 97
3.5 Memory Allocation for Lists - 107
3.6 Strings - 111

3.7 Compound Data Structures - 116

Chapter 4. Abstract Data Types

4.1 Collections of Items - 137

4.2 Pushdown Stack ADT - 139

4.3 Examples of Stack ADT Clients - 142
4.4 Stack ADT Implementations - 148
4.5 Generic Implementations - 154

4.6 Creation of a New ADT - 157

4.7 FIFO Queues and Generalized Queues -

4.8 Duplicate and Index Items - 173
4.9 First-Class ADTs - 177

4.10 Application-Based ADT Example .
4.11 Perspective - 194

Chapter 5. Recursion and Trees

5.1 Recursive Algorithms - 198
5.2 Divide and Conquer - 206
5.3 Dynamic Programming - 219
5.4 Trees - 227

5.5 Mathematical Properties of Trees 236 -

5.6 Tree Traversal - 240 ,
5.7 Recursive Binary-Tree Algorlthms - 246
5.8 Graph Traversal - 251

5.9 Perspective - 257

165

69

127

197

Sorting

Chapter 6. Elementary Sorting Methods 263

6.1 Rules of the Game - 265

6.2 Generic Sort Implementations - 270

6.3 Selection Sort - 283

6.4 Insertion Sort - 285

6.5 Bubble Sort - 288 .

6.6 Performance Characteristics of Elementary Sorts - 289
6.7 Algorithm Visualization - 295

6.8 Shellsort - 300

6.9 Sorting Linked Lists - 308

6.10 Key-Indexed Counting - 312

Chapter 7. Quicksort : 315

7.1 The Basic Algorithm - 316

7.2 Performance Characteristics of Quicksort - 321
7.3 Stack Size - 325

7.4 Small Subfiles - 328

7.5 Median-of-Three Partitioning - 331

7.6 Duplicate Keys - 336

7.7 Strings and Vectors - 339

7.8 Selection - 341

Chapter 8. Merging and Mergesort - 347

8.1 Two-Way Merging - 348

8.2 Abstract In-Place Merge - 351

8.3 Top-Down Mergesort - 353

8.4 Improvements to the Basic Algorithm - 35 7
8.5 Bottom-Up Mergesort - 359

8.6 Performance Characteristics of Mergesort - 363
8.7 Linked-List Implementations of Mergesort - 366
8.8 Recursion Revisited - 370

Chapter 9. Priority Queues and Heapsort ‘ 373

9.1 Elementary Implementations - 377
9.2 Heap Data Structure - 381

xvii

