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Preface

Dedicated to our parents Sarah and Robert B. Kincaid,
and (in memoriam) Carleton and Elliott Cheney.

This book has evolved over many years from lecture notes that accompany certain
upper-division and graduate courses in mathematics and computer sciences at The
University of Texas at Austin. These courses introduce students to the algorithms
and methods that are commonly needed in scientific computing. The mathemati-
cal underpinnings of these methods are emphasized as much as their algorithmic
aspects. The students have been diverse: mathematics, engineering, science, and
computer science undergraduates, as well as graduate students from various disci-
plines. Portions of the book also have been used to lay the groundwork in several
graduate courses devoted to special topics in numerical analysis, such as the numer-
ical solution of differential equations, numerical linear algebra, and approximation
theory. Our approach has always been to treat the subject from a mathematical point
of view, with attention given to its rich offering of theorems, proofs, and interest-
ing ideas. From these arise many computational procedures and intriguing questions
of computer science. Of course, our motivation comes from the practical world of
scientific computing, which dictates the choice of topics and the manner of treating
each. For example, with some topics it is more instructive to discuss the theoretical
foundations of the subject and not attempt to analyze algorithms in detail. In other
cases, the reverse is true, and the students learn much from programming simple
algorithms themselves and experimenting with them—although we offer a blanket
admonition to use well-tested software, such as from program libraries, on problems
that arise from applications.

There is some overlap between this book and our more elementary text, Numerical
Mathematics and Computing, Fourth Edition (Brooks/Cole). That book is addressed
to students having more modest mathematical preparation (and sometimes less en-
thusiasm for the theoretical side of the subject). In that text, there is a different menu
of topics, and no topic is pursued to any great depth. The present book, on the other
hand, is intended for a course that offers a more scholarly treatment of the subject;
many topics are dealt with at length. Occasionally we broach topics that heretofore
have not found their way into standard textbooks at this level. In this category are
the multigrid method, procedures for multivariate interpolation, homotopy (or con-
tinuation) methods, delay differential equations, and optimization.

The algorithms in the book are presented in a pseudocode that contains additional
details beyond the mathematical formulas. The reader can easily write computer
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routines based on the pseudocode in any standard computer language. We believe
that students learn and understand numerical methods best by seeing how algorithms
are developed from the mathematical theory and then writing and testing computer
implementations of them. Of course, such computer programs do not contain all the
complicated procedures and sophisticated checks found in robust routines available
in scientific libraries. Examples of general-purpose mathematical libraries are found
in the appendix on An Overview of Mathematical Software. For most applications,
such libraries are strongly preferred to code written oneself.

An important constituent of the book (and essential to its pedagogic purpose) is
the abundance of problems for the student. These are of two types: analytic prob-
lems and computer problems. The computer problems are, in turn, of two types:
those in which students write their own code, and those in which they employ ex-
isting software. We believe that both kinds of programming practice are necessary.
Using someone else’s software is not always a trivial exercise, even when it is as well
documented as with large program libraries or packages. On the other hand, stu-
dents usually acquire much more insight into an algorithm after coding and testing it
themselves, rather than simply using a software package. In most cases the computer
problems require access 1o a computer that has at least a 32-bit word length.

Software, errata, and teaching aids are available via the Internet as discussed in the
appendix. Also, the publisher has made available a Solution Manual for instructors
who adopt the book for their classes.

The third edition contains new problems, re-ordering of some problems, and
corrections to all known errors in the previous edition, Updating of the informa-
tion about resources on the Internet has been done in the appendix on mathemati-
cal software. Also, the bibliography has been updated. Many references to prob-
lems and to other parts of the book are now given with page numbers to help the
reader easily find them, Also, most theorems are displayed with names or titles
to help the reader remember them. The entire book has a new design style and
it has been reformatted for improved appearance. Many improvements have been
made throughout. For example, in this new edition, we have added a chapter on
optimization with subtopics on methods of descent, quadratic fitting algorithms,
Nelder-Meade algorithm, simulated annealing, genetic algorithms, Pareto optimiza-
tion, and convex programming. A standard course of one semester can be based
on selected sections from Chapters 1-4 and 6-8. A two-semester course could
cover selected sections in Chapters 1-9 plus other topics of interest. Chapters 4
and 5 could be taught independently from the previous chapters as a short course
on numerical linear algebra. Because of the ambitious scope of this book, some
sections make greater demands on the preparation of the reader. These sections
usually occur late in any given chapter so that the reader is not unduly challenged
at the start, and they may be skipped at the reader's discretion. Such sections are
marked with an asterisk. Page numbets are included with references to problems,
computer problems, and items such as theorems and equations outside the section
being read. Unless it says otherwise, references to equations, theorems, lemmas,
corollaries, etc. are assumed to be in the current section and page numbers are not
included. '
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Numerical Analysis:
Whatls It?

Numerical analysis involves the study, development, and analysis of algorithms for
obtaining numerical solutions to various mathematical problems. Frequently, numer-
ical analysis is called the mathematics of scientific computing.

The algorithms that we study invariably are destined for use on high-speed com-
puters, and therefore another crucial step intervenes before the solution to a problem
can be obtained: a computer program or code must be written to communicate the
algorithm to the computer. This is, of course, a nontrivial matter, but there are so
many choices of computers and computer languages that it is a topic best left out of
the science of numerical analysis per se.

There are certainly many other purposes to which computers can be put besides
the numerical solution of mathematical problems: providing basic communications,
keeping large data bases, playing games, “net surfing,” writing novels, accounting,
and so on. Solving mathematical problems numerically on the computer is scientific
computing. The development of the associated algorithms (procedures) and the study
of their behavior are the mathematics of scientific computing.

Often the development of an algorithm is stimulated by a constructive proof in
mathematics. In classical analysis, nonconstructive methods are frequently used, but
generally they do not lead to algorithms. For example, existence and uniqueness
theorems might be established by assuming that they are not true and then following
the trail of a logical argument until arriving at a contradiction. Not every constructive
proof will lead to a successful algorithm, however. A difficulty that may arise is that
an analytical solution to a given problem may be several steps away from a numerical
solution. Or it might be completely impractical because of slow convergence or the
need for lengthy computation.

As an example of the gap between an existence theorem and a numerical solution
of a problem, consider the ubiquitous matrix equation Ax = b. We know that it has
a unique solution whenever A is nonsingular. But this fact may be of little solace
when we are faced with a large linear system containing empirical data and we wish
to compute an approximate numerical solution.

In general, in this book, we will begin each topic with a basic mathematical prob-
lem that arises frequently in practical applications. Then a certain amount of analysis
will be presented in order to arrive at an algorithm for solving the problem. Algo-
rithms are usually given in the form of a pseudocode. Finally, additional analysis of
the algorithm may be given to help in understanding its behavior, such as its conver-
gence or its resistance to corruption by roundoff error. Such analysis may take the
form of either forward or backward error analysis.




2 Numerical Analysis: What Is It?

Behind each basic mathematical problem to be considered there are always phys-
ical applications. Let us illustrate all this with a heat-flow problem. The temperature
in a solid piece of metal with various boundary conditions is governed by mathemat-
ical equations that must be satisfied at every point and at every instant of time. The
principal equation here might be the heat equation

3%u _ du
ax2 o

It is a parabolic, linear, second-order, partial differential equation. It models the heat
flow inside a rod under certain assumptions on the actual physical problem. The
variable x is the space coordinate, and ¢ is the time. The temperature is ¥ = u(x, ).
To solve the model problem on the computer, the space-time region is discretized by
a mesh of grid points, and the numerical solution is sought at each of these points.
The partial derivatives in the heat equation can be approximated by finite differences

such as
ov(x,t 1
(at )~ Fvet+ b —v(x, 0]
Pu(x, t 1
l;ixz’ gV hz[v(x +h )= 20(x, 1) +vx = h,1)]

Here, k and h are the mesh spacings in the t-direction and the x-direction, respec-
tively. Also, we have changed to the variable v to emphasize that we are solving
an approximation to the model problem rather than the original problem. Replacing
the partial derivatives by these approximations and simplifying, we arrive at a linear
equation at each grid point (x;, t;). Using the abbreviation v;; for v(x;, t;), we obtain

Vi j+1 = SVi-1 j + (1= 28)vij + $vig1,

where s = k/h%. The numerical solution can be advanced step by step in the ¢-
direction using the preceding equation. This procedure is called an explicit method
because the new values v; ;4 are explicitly determined one at a time from the previ-
ous values v;_y j, U j, Vitl,j- This is all very elegant, and one would not anticipate
any difficulties. But the analysis as well as numerical experience indicate that the
method is seriously flawed! We turn then to an implicit method. In it, all of the new
values are determined at the same time by solving a linear system of the special form

Vj+1 = AVJ

Here A is a certain tridiagonal matrix and V; = [vij, v2;, ..., v;]7 . Each of these
methods requires a stability analysis to determine the permissible range of values
for the mesh sizes k& and k and the associated convergence behavior. It is here that
the explicit method competes poorly. Complete details can be found in Chapter 9
(p. 615).
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1.0

Introduction

This chapter starts with a review of some important topics in calculus that are re-
quired in the subsequent chapters. We encourage readers to skip boldly over mate-
rial that is already familiar to them. In fact, some may wish to begin with Chapter 2,
p. 37.

1.1

Basic Concepts and Taylor's Theorem

We begin with a review of some basic concepts from calculus. At this point, one
might ask: Why do we need to discuss such topics if we are primarily interested in
scientific computing and numerical algorithms? A solid background in basic math-
ematical concepts is essential to understanding the derivation of most numerical al-
gorithms. Taylor’s Theorem in various forms is fundamental to many numerical
procedures and is an excellent starting point for the study of scientific computing
since no advanced mathematical concepts are required.

Limit, Continuity, and Derivative

If f is a real-valued function of a real variable, then the limit of the function f atc
(if it exists) is defined as follows: The equation

lim f(x) =L

means that to each positive & there corresponds a positive & such that the distance
between f(x) and L is less than ¢ whenever the distance between x and c is less
than §; that is,

If(x) —L| <s whenever O0<|x—c|<d

If there is no number L with this property, the limit of f at ¢ does not exist.




4 Chapter One Mathematical Preliminaries

FIGURE 1.1
y=f(x)=x?

i 1 _
-3 -2 -1

For example, we consider the function
fx) =x?

From the graph of f (x) = x? in Figure 1.1, it appears that as x approaches 2, f(x)
approaches 4, so the equation

limx® =4

x—=2
should be true. We now see why this is so by proving that for ¢ > 0 thereisa é > 0
such that |x2 —4| < & whenever 0 < |x —2] < 4. Lete > 0andé = —24+/4 +¢ >
Osothat8(6+4) = 6. If 0 < [x—2| < 4, then |x 42| = |x=24+4| < |x—2|+4 < §+4.
Thus, we have [x2 — 4] = |x + 2||x — 2| < (8 + 4)8 = ¢. Notice that we worked
backwards in a sense to discover what values of § would give us exactly €. Clearly,
other values of § work as well, such as § = ¢/(5 + ¢). (See Problem 1.1.1, p. 12.)

As another example, we consider

Il

1 ifx>0
g(_x)..——:{
x f—

1 ifx<0

See Figure 1.2 for the graph of the function g(x) = |x|/x, from which it is clear why
g(x) is undefined at 0. We note that the equation
lim L =L
x—=0 x
is.not true for any number L. Indeed, let ¢ = 1, and suppose that |x|/x — L| < 1
whenever 0 < |x| < 8. If x = %6, then 0 < |x| < & and we have {x|/x = 1.
Butif x = —'58, then 0 < |x| < & and |x|/x = —1. In both cases, we must have
||x|/x — L| < 1. There is no number L satisfyingboth |l - L] < land |-1-L] < 1,
since this would require both 0 < L < 2and -2 < L < 0. Clearly, this is an
impossible situation! So we say that the limit does not exist.
If f is defined only on a specified subset X of the real line, the definition of limit
is modified so that | f(x) — L} < ¢ wheneverx € X and 0 < |x — ¢] < 8.
The function f is said to be continueus at ¢ if

lim f(x) = f(c)

AT «



FIGURE 1.2
y=g(x)=|x|/x

THEOREM 1

1.1 Basic Concepts and Taylor's Theorem §

Fa Y

> —1
y=-1

Thus, the function f(x) = x? is continuous at the point 2, whereas the function |x|/x
is not continuous at 0, no matter how it is defined at 0. These assertions follow from
remarks made previously.

An intuitively obvious theorem is given next.

Intermediate-Value Theorem for Continuous Functions
On an interval [a, bl, a continuous function assumes all values between f(a) and

f(b).

The derivative of f at ¢ (if it exists) is defined by the equation

£© = lim f(x) f(c)

X—>C
Since this limit need not exist for a particular function and a particular c, itis possible
for the derivative not to exist for such a function. If f is a function for which f'(c)

exists, we say that f is differentiable at c. If f is differentiable at c, then f must be
continuous at c. We now see why this is so. Consider

Hm( () — f() = | ﬁ)—ﬂ—) —o)

=f(c)'}grg(x—c)=f(c)-o=o

Clearly, if f(x) is differentiable at ¢, then f’(x) exists and lim,.. f(x) = f(¢).
But the converse is not true! For example, if

fx)=1x|

then f7(0) does not exist. See the graph of f(x) = {x| in Figure 1.3. The derivative
at a point x is the tangent line to the curve at f(x). But at the bottom of the “V” in
the curve (x = 0) there is no unique tangent and no derivative at x = 0.

The set of all functions that are continuous on the entire real line R is denoted
by C(R). The set of functions for which f’ is continuous everywhere is denoted
by C!(R). If f € C'(R), then f’ is continuous at all points in R and, thereby,
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FIGURE 1.3
y=f(x) = x|

THEOREM 2

differentiable throughout the real line. Since the differentiability of a function at a
point implies its continuity at that point, we have C!(R) C C(R). The set C (R)
is a proper subset of C(R) because there are (many) continuous functions whose
derivatives do not exist. The function f(x) = |x| is such an example.

We denote by C2(R) the set of all functions for which f” is continuous every-
where. By reasoning similar to that given above,

C*(R) c C\(R) ¢ C(R)

Again, these are proper inclusions since there are functions.that are once differen-
tiable but not twice, such as f (x) = x?sin(1/x). (See Problem 1.1.3, p. 12.)

Similarly, we define C"(R), for each natural number 7, to be the set of all func-
tions for which f® (x) is continuous. Finally, C*(R) is the set of functions each of
whose derivatives is continuous. We have now

C*R)C---C CHR) c C'(R) c C(R)

A familiar function in C®(R) is f(x) = €~
In the same way, we define C"[a, b] to be the set of functions f for which f®
exists and is continuous on the closed interval [a, b].

Taylor's Theorem

An important theorem concerning functions in C"[a, b] is Taylor’s Theorem, which
arises throughout the study of numerical analysis or in the study of numerical algo-
rithms in scientific computing.

Taylor's Theorem with Lagrange Remainder

If f € C"a, bl and if f"*1) exists on the open interval (a, b), then for any points ¢
and x in the closed interval [a, b),

flo=3Y" %f""(C)(x — o) + En(x) @)

k=0

where, for some point & between ¢ and x, the error term is

_ 1 (n+1) _ an+l
En(x)————(n+l)!f &)Yx—c)



