RREREE - 4T IERY

Software Configuration Management
Strategies and Rational ClearCase

PR BRI

55 Rational ClearCase
(B EIAR)

[%] Brian A. White 2

S‘()FTWARE CONFIGURATION
MANAGEMENT STRATEGIES
AND RATIONAL CLEARCASE

A PRACTICAL INTRODUCTION

T
] saconsty
1 hmsaicn

; % Y o
() 1@ %7 % it

www.infopower.com.cn

MNRAR - 4T EES

Software Configuration Management
Strategies and Rational ClearCase

PG R MG

5 Rational ClearCase
(BHIR)

[%] Brian A. White %

7D AL oL

Software Configuration Management Strategies and Rational ClearCase
(ISBN 0-201-60478-7)
Brian A. White
Copyright © 2000 Addison Wesley
Original English Language Edition Published by Addison Wesley
All rights reserved.
Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA
ELECTRIC POWER PRESS, Copyright © 2003.

A -F I ENR i Pearson Education $AX E) AR AHTEH BB A (B, BUTRHTBIRA
EEMEERS) BFHR. RIT.
REHBEBTFT, ABUEATIEEDREBREFNRD .

ZHHHREH Pearson Education i thirE, TS EFEHHEE.

ERTBAREEEFRELS: BF: 01-2003-1009

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

WRTHEARJKAMEEA (FEEDPEEE. RVRHNTREATEGBHX) H8RIT.

BEEREE (CIP) MiE
AR ETE ML Rational ClearCase / (35) Hi§E. —RHEA., —bK. REBHHK
#, 2003
(RRERAR - ETERFD
ISBN 7-5083-1400-X
[L&.. 4. MIRHE-EE-%HE-—-XX V.TP3I
d E R B CIP H|EF (2003) % 048303 &

MR TR

A A RERAR - RETERS :

+ £ W-AE ¥ E S SRational ClearCase (HIR)

#: (%) Brian A. White

*: hEB N HEMT
Mt dART=BFBCS MERE: 100044
Bi%. (010) 88515918 f£X:. (010) 88518169

¢ LR R

D FEEEBEILRRITH

1 787X1092 1/16 g gk: 21

: ISBN 7-5083-1400-X

: 20037 RIS —/K

: 20037 B B —REIR

: 38.00 Jt

b=}

HE/HHBE
SNXNG Y HRE

Foreword

As chief engineer for the Configuration Management business unit of Rational
Software, 1 have the pleasure of focusing on a fascinating problem: how to do
software configuration management “right.”

My first experience with the rewards and perils of “doing it right” was as
an undergraduate in applied mathematics at Harvard University. My freshman
mathematics professor turned out to be a 35-year-old graduate student with one
goal: solving an elegant little puzzle that had baffled mathematicians for a cen-
tury, the Four-Color Problem. His reward was that he got up every morning
knowing exactly what he was going to do. The peril was that fifteen years later,
he was still a graduate student. Happily, any immediate risk of my following
that perilous path was eliminated when later that year I had my first encounter
with software engineering (back then, we just called it programming). Program-
ming was mathematics with a built-in positive-feedback mechanism. You get
the proof (the program) right, and you have not only intellectual gratification,
but also something that actually does something interesting and for which com-
panies are eager to pay large sums of money.

But later, in graduate school, the positive-feedback mechanism started to
break down. By that time, the software systems I built involved combining large
numbers of files from a variety of programmers, some of whom worked even
more irregular hours than I did. Instead of composing elegant algorithms, I
spent the majority of my time finding out what others had done and letting
them know what I planned to do. Not only was this far less intellectually grati-
fying, but everything took much longer to build, and funding agencies were cor-
respondingly less eager to pay for results that came ever more slowly.

So this would be my Four-Color Problem: discovering the process by which
an individual could be a member of a team of programmers but be as pro-
ductive as when working alone. Attempts to solve the problem by introducing
policies and procedures for managing change did make the process more

xii Foreword

predictable and decrease certain classes of errors, but at the cost of further
decreasing both the intellectual gratification and the productivity of the pro-
gramming process.

One ray of hope came from the cute little program called “make.” No poli-
cies or procedures were required. With only file system date stamps and an
admittedly cryptic “makefile,” the work from an arbitrarily large number of
programmers could be compiled as reliably and efficiently as that of a single
programmer working alone. The challenge was to find an analogous software
tool that would reduce or eliminate the overhead of programming in a team
environment. (As a side note, around that time, the Four-Color Problem was
finally solved, but only with the aid of a computer program. Apparently, even
some mathematical problems are tractable only with the aid of software tools.)

During a decade of studying the problem of software configuration manage-
ment at Inference Corporation, Sun Microsystems, Hewlett-Packard, and Bell-
core, I had the opportunity to identify and implement several key components of
automated software configuration management. Then, in November of 1995, I
was asked to join Atria Software as project lead for “ratbert,” the code name for
a project to build a process automation layer above ClearCase.

One of my first activities at Atria was to participate in the design of an
“out-of-the-box” process for the new process automation product. Initially
assigned to implement this process was a soft-spoken sales engineer named
Brian White. Although it seemed a bit strange to have someone in the sales
organization be responsible for implementing such a key element of a new prod-
uct, it soon became apparent that sales engineers at Rational were some of the
world’s experts on SCM processes. Their job was to go to the most sophisti-
cated software development organizations in the world, learn about how those
organizations did software development, and then show them how to use Clear-
Case to automate that process. We needed the best sales engineer we could get
for this project, and Brian was the person we picked.

The initial design meetings for the out-of-the-box process were held off-site
at the almost-completed new home of Dave Leblang (the chief architect of Clear-
Case). There were occasional interruptions intrinsic to the completion phase of a
successful entrepeneur’s new home: Irish stonemasons building granite walls for
the terrace; 40 loads of earth brought in to level out the back gardens. But, grad-
ually, the out-of-the-box process took shape.

Although we rapidly converged on the key elements of the process, two dis-
tinct viewpoints emerged. One viewpoint was that every organization was very
different, and any process that we developed was just some initial code that
would be modified significantly by every installation. The other viewpoint,

Foreword xiii

shared by Brian and me, was that a wide range of organizations could share a
common process if that process was designed to be easily configured. This view-
point was supported by the fact that ClearCase sales engineers tended over time
to develop a set of standard scripts that they would use with little modification
at each new organization. This viewpoint was also supported by my experience
that most process variations are added to address missing underlying tool sup-
port; but when full tool support is provided for the key SCM functions, a
remarkably similar set of processes become appropriate for a wide range of
organizations.

In the most recent release of ClearCase, the common process viewpoint has
been realized in the form of the “unified change management” process. This
takes the form of both a process and tool support specifically designed to sup-
port that process (e.g., new objects, operations, and GUIs). Although tool sup-
port for this process will need to evolve, it is my belief that this common process
will become the standard way of performing software configuration manage-
ment. Brian White’s book, Software Configuration Management Strategies and
Rational ClearCase®, provides the foundation for both understanding and
adopting this process.

Geoffrey M. Clemm, Ph.D.
Rational Software Corporation

Pretace

What This Book Is About

This book is about the engineering discipline of software configuration manage-
ment (SCM) and how the widely used SCM product, Rational ClearCase®, auto-
mates and supports SCM best practices through a model called unified change
management (UCM). This book covers basic SCM concepts, typical SCM prob-
lems encountered as projects and software systems grow in size and complexity,
and how you can apply SCM tools and processes to solve these problems.
Advanced SCM ropics are also discussed, such as managing large geographically
distributed teams and combining the disciplines of SCM and change request
management (or defect tracking).

Specifically, this book discusses SCM in terms of a specific SCM tool called
ClearCase. Although the discussion is specific to ClearCase, some of the material
covered is SCM-tool-neutral. There are very few new books on software config-
uration management and even fewer that provide strategies for a specific tool. It
is in the application of an SCM tool where projects most often run into problems
and fail.

ClearCase is a commercially available SCM tool. It is a good choice of tool
for this discussion because it provides an open architecture that is used to
implement and automate a wide range of SCM solutions. ClearCase is used in
many different development environments on many types of applications, such
as mission-critical IT, embedded systems, telecommunication systems, financial
applications, Web site content, and other commercial and government software
systems. Companies in these diverse industries are successfully using ClearCase
as the cornerstone of their SCM environment.

This book is not a step-by-step cookbook for using ClearCase, nor does it
serve as a substitute for the ClearCase product documentation. You can use the
concepts in this book to improve your application of any SCM tool. However,
you will get the most out of this book if you are planning to deploy ClearCase
or you want to improve the current way you use ClearCase.

xvi Preface

On a personal note, this book is a collection of the experience I've gained by
working with some incredible people in the SCM field over the last ten years.
After reading it, you should have a better understanding of software configura-
tion management, a better idea of the software development problems solved by
using SCM tools and techniques, and a clear understanding of how you can use
ClearCase to solve these problems and meet your SCM requirements. I sincerely
hope you enjoy the book and find it valuable.

What You Need to Know before Reading This Book

The key to your success is understanding SCM, the requirements for your soft-
ware project, and how to apply an SCM tool to meet a project’s requirements.
This book will get you started if you are new to software configurement manage-
ment. However, you will get the most out of this book if you already have some
SCM experience and have used basic version control tools before. This book
assumes you are familiar with the software development process. It will also be
helpful if you have a specific development project in mind while you are reading.

Who You Are and Why You Should Read This Book

This book is not about the nitty-gritty details of writing ClearCase triggers and
scripting home-grown integrations with legacy tools; rather it will give you a
high-level view of some common SCM scenarios and how ClearCase can be
applied. If you are new to SCM or ClearCase, read this book cover to cover. If
you have used ClearCase or have a strong foundation in SCM, look through
the table of contents and pick chapters and sections that are of particular inter-
est to you.

For a Software Engineer

The biggest thing an SCM tool can do for a software engineer is to stay out of
the way. SCM should perform its function, yet be as transparent as possible.
The SCM tool and how it is applied should maximize your ability to make
changes to the software. Poor tools or poorly designed processes can add unnec-
essary time and effort to your work. This book can help you identify the areas
in your SCM tools and processes to streamline. It discusses some new advances
in the SCM area specifically designed for streamlining development. One of

Preface xvii

these is the notion of activity-based software configuration management. The
idea here is to raise the level of abstraction from files to activities. This makes
working with an SCM tool, tracking your changes, and sharing changes with
other software engineers more intuitive.

If you’re new to SCM, read Chapter 1, What Is Software Configuration
Management? For an overview of the objects managed by ClearCase, see chap-
ter 4, A Functional Overview of ClearCase Objects. To gain an understanding
of how ClearCase is-used on a daily basis from a development perspective, see
chapter 8, Development Using the ClearCase UCM Model.

For a Software Project Manager or Technical Leader

As a leader for a software project, you are concerned with deciding what
changes to make to a software system and then ensuring that those changes
happen. Unplanned changes, made by well-meaning developers, introduce risk
into the project schedule and may cause schedule delays and poor product qual-
ity. The ability to control and track change is essential to your project’s success.

This book should help you gain a solid understanding of SCM, see why you
need it, and learn how ClearCase can be used to solve problems you may
encounter on projects. Specifically, see chapter 6, Project Management in Clear-
Case, and chapter 7, Coordinating Multiple Project Teams and Other Scenarios.
If you are managing teams that are not all in one location, see chapter 10, Geo-

graphically Distributed Development, for a discussion of the issues and strate-
gies involved.

For a Tools Engineer

The role of tools engineer is often overlooked but is essential to success, partic-
ularly in large organizations. Your job is to figure out how to apply a given tool
to the people, processes, and organization for which you work. This book will
give you information about SCM and ClearCase that you can use to determine
the best way to apply ClearCase to projects.

For Those Evaluating ClearCase

This book is a good starting point in the evaluation of ClearCase because it pre-
sents a number of common software development scenarios as well as more
complex scenarios such as geographically distributed development. It discusses
the requirements of SCM processes and tools in terms of a set of SCM best

xviii Preface

practices and shows how to apply ClearCase to support them. Included are
overviews of ClearCase’s out-of-the-box process, unified change management,
and ClearCase objects.

Use chapter 1, What Is Software Configuration Management?, and chap-
ter 2, Growing into Your SCM Solution, to help determine the SCM tool
requirements for your project. Look to the remaining chapters to determine
whether ClearCase will meet your needs.

For Experienced ClearCase Users

If you are a long-time ClearCase user, this book is interesting from a general
software configuration management perspective and may offer some insights
into how to approach SCM solutions on your projects. It also offers some
advice if you are being asked to support geographically distributed development
teams (see chapter 10, Geographically Distributed Development).

The book contains an overview of ClearCase’s out-of-the-box usage model
called unified change management, which is a recent addition {see chapter 3,
An Overview of the Unified Change Management Model). If you are curious
about integrating change request management with ClearCase, then look at
chapter 11, Change Request Management and ClearQuest. Look also through

the table of contents and pick chapters and sections that are of particular inter-
est to you.

How the Book Is Laid Out

Here is a brief summary of all the chapters.

w Chapter 1, What Is Software Configuration Management, provides a
general introduction to software configuration management and the key
best practices behind it. It answers the questions: what is software con-
figuration management?, what are SCM tools?, and what is the SCM
process?

n Chapter 2, Growing into Your SCM Solution, discusses the growing com-
plexity of software development projects and proposes that as projects
grow in complexity so does their need for richer SCM support. It covers
the history of SCM tool evolution using five categories of software proj-
ects ranging from software developed by a single individual to projects
with many geographically distributed project teams.

Preface xix

a Chapter 3, An Overview of the Unified Change Management Model, pro-
vides an overview of ClearCase’s out-of-the-box usage model, unified
change management, which automates and supports a particular SCM
process. The material is discussed in terms of the roles and responsibili-
ties of the various team members, such as the architect, project manager,
developer, and integrator.

s Chapter 4, A Functional Overview of ClearCase Objects, provides a func-
tional overview of ClearCase objects and concepts. This chapter serves as
a bridge between general SCM terminology and ClearCase-specific ter-
minology.

m Chapter 5, Establishing the Initial SCM Environment, provides informa-
tion on setting up an initial SCM environment. It discusses the basics of
ClearCase architecture. The chapter also covers mapping the software
architecture to the physical components in the SCM tool and briefly dis-
cusses creating the SCM repositories and importing existing software.

s Chapter 6, Project Management in ClearCase, focuses on the role of the
project manager with respect to SCM. Particular attention is paid to
automation and functionality in ClearCase that specifically supports the
project manager. It presents an example of creating a ClearCase project.

n Chapter 7, Coordinating Multiple Project Teams and Other Scenarios,
discusses the issues of coordinating parallel work. It also covers the sce-
narios involving multiple teams cooperating on a common release, devel-
opment of multiple releases in parallel with multiple teams, coordination
of IS/IT-style projects, and coordination of documentation-oriented
projects.

u Chapter 8, Development Using the ClearCase UCM Model, provides an
introduction to using ClearCase, specifically focusing on the role of the
developer. It shows you how to find and join an existing project, how
to make changes to files to accomplish an activity, how to deliver the
changes associated with the activity, and how to update the development
workspace with changes made by other developers on the project.

w Chapter 9, Integration, Build, and Release, focuses on the role of the
integrator and discusses approaches to software integration. This chap-
ter briefly covers building, baselining, and how baselines are promoted.
It provides an overview of how components are staged in a separate
repository that is used for delivery and version control of the “built”

b 4 Preface

deliverable files and directories. It also discusses how software is
released by comparing different types of software systems.

s Chapter 10, Geographically Distributed Development, discusses the
organizational, communication, and technical challenges that need to be
overcome to be successful in distributed development. It looks at three
common scenarios of distributed development and the issues associated
with each. Finally, this chapter discusses the technology provided by
ClearCase MultiSite and how to apply MultiSite to the three scenarios.

a Chapter 11, Change Request Management and ClearQuest, covers the
area of change request management (CRM), a subset of which is defect
tracking. SCM and CRM are two closely related disciplines, which
together form comprehensive change management support. This chapter
also discusses a product called Rational ClearQuest and how it works
in concert with ClearCase to provide the foundation technology for the
unified change management model.

Conventions Used

Commands and Emphasized Text
Command line operations are called out with a different font and prompt, for
example:

prompt> command -flagl -flag2

Long commands are written on multiple lines for clarity (as shown here), but
should be typed on one line, for example:

prompt> longcommand longobject-identifier
-flagl //machine/pathname
-flag)

P Note: Particular points that need to be emphasized appear in the text in this
font with an arrow to alert you.

WARNING: The screened warning box is used to emphasize an issue or
concern that might be encountered and should be avoided.

’,_

Preface xxi

ClearCase Pro Tip

A screened box labeled with the above denoftes information that is specifi-

cally useful for people who are already using ClearCase. If you have not
used ClearCase, you can skip the tips.

UML Diagram Format

This book includes diagrams that use a graphical modeling language called the
unified modeling language, or UML. For more information on UML, see The
Unified Modeling Language User Guide by Grady Booch, James Rumbaugh,
and Ivar Jacobson [Booch 1999].

Here is a description of the small subset of UML used in this book: An
object is shown as a box, with text that describes the object. Lines represent
associations between the objects, with text that describes the association. For
example, “a house has a roof”:

House Hag Roof

The association can be annotated to provide additional information, such
as how many objects can be connected. This is called the “multiplicity” of the
association. For example, any given house has only one roof and any given roof
can be associated with only one house. Any given house can have many win-
dows or no windows. Any given window can be associated with no house

(before it is installed) or one house. These annotations would be represented as
shown here:

House

Has, Has -
1 0.."
Roof Window

xxii Preface

Is it really a house if there are no windows? If not, then you would use “1..n”
for the windows rather than “0..n.”

A black diamond is another association annotation that is used to show
composition. Composition means one object is composed of another. Important
semantics are implied by this type of association. One object “owns” the other.
That is, owned objects can be created and removed, but once created they live
forever with the owning object. If the owning object is destroyed, its parts are
also destroyed. For example, a database has database tables. When the database
is destroyed, all the tables are also destroyed. This would be represented in
UML as shown here:

Database Table

Finally, a UML relationship called “generalization” occurs between a gen-
eral thing and a more specific kind of that thing. For example, the general thing
could be a shoe, and specific types of shoes are running shoes, hiking shoes, and
tennis shoes. Generalization is represented by an open arrow pointing toward
the general object as shown here:

Shoe

Running Shoe Hiking Shoe Tennis Shoe

Acknowledgments

I could never have even begun this book without the help of some key people
who shaped my career and me. For that I would like to thank Larry Hull, Larry
Oslund, Edward Ely, John Leary, and Claudia Dent. After I tossed the idea
around for quite a few years, Steve Yost was the catalyst that actually started
the project by putting me in touch with someone at Addison-Wesley. I would
also like to thank Lorie Stull for her encouragement to take on this challenge.

This book would never have been completed without the help of many oth-
ers. I would like to thank Kimberly Stamm for her support and encouragement
through many long weekends; Claudia Dent for allowing me the flexibility and
time 1 required; the staff of Addison-Wesley—particularly my editor, Debbie
Lafferty, and Marilyn Rash; and the production team—Judy Strakalaitis, Hilary
Selby Polk, and Doug Leavitt—for walking a new author through the process;
Brad Appleton for sharing his depth of knowledge in SCM and for the time
spent providing detailed comments throughout many drafts; Arte Kenyon, who
was of great assistance in the writing process; and Geoff Clemm, Peter Klenk,
Alan Tate, and Nat Mishkin for the finishing touches. I'd also like to extend my
thanks to the reviewers: David Bellagio, Ralph Capasso, David Cuka, Elfriede
Dustin, Doug Fierro, Susan Goetcheus, Michael Harris, Bill Hasling, Philippe
Kruchten, Dean Larsen, Jeff Leyser, Jas Madhur, Linda Okoniewski, Brett
Schuchert, Ken Tessier, and all the others who provided invaluable input.

Without ClearCase, this book would not have been written, and without
David Leblang ClearCase would never have been built. I would like to sincerely
thank the original 10 people who took their fate in their hands and started a
company that resulted in the birth of ClearCase: David Leblang, Howard
Spilke, Bob Chase, Paul Levine, Dave Jabs, Debbie Minard, Bryan Douros,
Gordon McLean, Peter Hack, and Jim Herron. It has been a privilege to have
worked directly with most of these incredibly talented individuals who helped
set the standard of excellence for SCM tools.

xxiv Acknowledgments

Unified change management would not have been born without the ideas
and support of a number of people at Rational Software and at a number of
companies using ClearCase. I would like to thank Geoff Clemm, David Le-
blang, Debbie Minard, and the many ClearCase users I've had the pleasure to
work with for formulating the basic ideas behind the UCM model; Peter Klenk
for turning those ideas into reality and leading the UCM development effort;
Jonathan Aibel, Howard Bernstein, Brian Douros, Hans Heilman, Shirley Hui,
Mark Karuzis, Matt Lennon, Nat Mishkin, Brian Morris, Ken Tessier and Mary
Utt for the attention to detail and leadership in the design, documentation, im-
plementation, and testing of UCM; Dave Bernstein, Claudia Dent, and Hugh
Scandrett for their management leadership; and everyone at Rational Software
who is involved with the UCM efforts. Keep up the good work.

Contents

Foreword
Preface
Acknowledgments

CHAPTER 1 WHAT Is SOFTWARE CONFIGURATION MANAGEMENT?

1) SO Bost Prochiest e
1.2 SCM Tools and SOM PrOCesSot ee e eie et iieerariaeananaaans

CHAPTER 2 GROWING INTO YOUR SCM SoLuTion

2.1 Dealing with Changing Project Requirements............................
2.2 Evolution of SCMTo0ls.oovvveitieie e

2.3 Summary

CHAPTER 3 AN OVERVIEW OF THE UNIFIED CHANGE MANAGEMENT MODEL

BT What IS UMY, . ettt e
32 Whotls ClearCase?.oooneriie i ieee e

3.3 ClearCase UCM Process Overview

3.5 The Configuration Manager: Setting Up the SCM Environment
3.6 The Project Manager: Managing a Project

3.7 The Developer: Joining a Projed and Doing Development

3.8 The Integrator: Integration, Build, and Release
3.9 The UCM Baseline+ Change Model

..

3.4 The Architect: Defining the Implementation Model

..........................

Xi
XV
XXiii

51

......... 51
......... 52

