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The well-established quantum field theory that describe
spins 0, 1/2 and 1 has become an important theory in the micro
world, to extend this theory to a general theory that could de-
scribe arbitrary spin has turned out to be a significant work.
Theoretically, such a work is helpful in completing the Bose-
Einstein and Fermi-Dirac statistics and the field theories. Practi-
cally, the established relativistic wave functions, projection op-
erators and propagators can be applied to the calculation of Fey-
nman diagrams and to amplitude analyses for higher and middle
energy physics processes. In this book, basic theory that de-
scribes free particles of arbitrary spin is presented systematical-
ly; the theory includes higher spin wave equations, wave func-
tions, projection operators and propagators, which have been in-
vestigated by the author in recent years. Concretely, the main
content in this book are as follows. Firstly, the Klein-Gordon
(K-G) equations for an arbitrary integral spin and the Rarita-
Schwinger (R-S) equations for an arbitrary half integral spin are
derived rigorously from the Bargmann-Wigner(B-W) equations,
which have been regarded as the simplest, and the least restric-

tive (though in many ways the most profound) set of equations.
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A profound property of the present derivation is to demonstrate
clearly that all the subsidiary conditions imposed on the K-G and
R-S equations are included in the B-W equation. This derivation
extends the conclusion, recognized by Salam, that the B-W e-
quation is equivalent to the R-S equation in the case of spin 3/2,
to a general case that includes any spin, that is, the B-W equa-
tion is equivalent to the K-G equation for an arbitrary integral
spin, and to the R-S equation for an arbitrary half-integral spin.
Such a conclusion could not be followed up by using the method
employed by Salam, in which the symmetric conditions are con-
sidered first and then the wave equations are considered, because
it makes the calculation so difficult that an extension to an arbi-
trary spin is almost impossible. In our derivation, an alternative
procedure is used, namely, the wave equations are considered
first and then the symmetric conditions are considered. This
procedure could not only overcome the above difficulty and also
make the calculation much easier.

Secondly, a systematic method of solving the K-G and the R
— S equations derived from the B-W equations is developed, and
the explicit helicity wave functions, corresponding to positive
and negative energy solutions both in momentum and in coordi-
nate representation for arbitrary integral and half integral spins
are deduced in a step-by-step way. The wave functions for an ar-
bitrary integral spin n are expressed by n ey (the wave functions
of spin 1) coupled by C. G coefficients, and the wave functions
for an arbitrary half-integral spin n+1/2 are expressed by the

wave functions of spin n and the Dirac spinors «, and v, coupled
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by C. G coefficients, in which only the coupling correspond to
the maximum possible spin is kept. For the positive energy wave
functions in momentum representations, our expressions are
consistent with those constructed by Auvil and Brehm and S. U.
Chung. Except the negative energy wave functions, which do
not appear in the Auvil-Brehm formulation, are now deduced,
what's new here is the procedure used to solve the K-G and the
R-S equations. The method utilized by Anvil and Brehm is that
the wave functions are constructed first based on preconceived i-
deas, and are then found to satisfy the K-G or R-S equations. In
our procedure, the wave functions are derived rigorously from
these equations themselves both in coordinate and in momentum
representation, starting from the lowest spin cases. In this way,
it can be shown clearly how the non-maximum spin components
are removed by the subsidiary conditions contained in the K-G
and R-S equations.

Thirdly, based on the above solutions, a direct derivation of
the projection operators for an arbitrary integral and half-inte-
gral spin is performed in an arbitrary frame. The results are in
agreement with those constructed by Behrends and Fronsdal,
who carried out this construction first in a rest system and then
generalized to an arbitrary frame, thus the Behrends-Fronsdal”
formalism is confirmed. Since it has been recognized by Chung
and by Filippini and Fontana and Rotondi that among the earlier
works of constructing the higher spin projection operators by Be-
hrends and Fronsdal and by Zemach, the Zemach formulation is

incorrect because it is essentially a non-relativistic one, our di-
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rect calculation performed in an arbitrary frame and based on the
explicit formula of the wave functions has provided an independ-
ent and necessary and reliable check.

Finally, based on the wave functions and projection opera-
tors, the Feynman propagator for an arbitrary spin is calculated
both in coordinate and in momentum representation. This calcu-
lation extended the theory of Feynman propagators for spins 0,
1/2, 1, and 3/2 to a general one. The definition and the method
of calculation for the Feynman propagator of higher spin is con-
sistent with that of lower spin and with that suggested by Scad-
ron, but is different from that proposed by Weinberg, thus the
formulas for the propagators are different from that derived by
Weinberg in form. Since Scadron did not work out explicit ex-
pressions for the propagators, our formulas for the propagators
are thus the first direct extensions of the lower spin propaga-
tors. As is well known in the theories of free-fields, when the
spin is larger than 1/2, an additional non-covariant term inevita-
bly appears in the expression of the propagator. The calculation
for this additional ‘term is quite complex; however, we have
found a systematic way to overcome this difficulty. Explicit ex-
pressions for the propagators for spins 2, 3, 5/2 and 7/2, which

are often useful for experimentalists, are provided.
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