&8 0 v SOHLBE S 3 1 B B

WENERFRITEA

4B AN OWERR)

TE P AT b
AL ki b s

The Art of Computer
Programming, Volume 4
Generating All Trees
History of Combinatorial
Generation

DIETE IF Fascicle

(F2) Donald E.Knuth #

|
J @ ML T o R 4
¢ China Machine Press

vf%ﬂlﬁl? iR

4k A4

AT

2H 5 HE ey D S

o §let

The Art of Computer Programming
Volume 4, Fascicle 4

Generating All Trees
History of Combinatorial Generation

O i8R

(%) DOIﬂldEKIMth—’ %
Wit AR K

#lH T A i AR A

China Machine Press

XTFHESTHXELZBREFCL KB AN ALATTREIRERE LR, (R
PEFIRHER, $45 HARE) REFEHERRNBINE. (FARTHAEERNTT
K—EH—Es, ZAoMHEERTERMAEERRIGE. EEAFRHARNEFER
REFNE, MAXEAEELE ~ B3IBERITEIFLMECESROERT R A, —mBEE,
B AR T RRE A E A R

Simplified Chinese edition copyright © 2007 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: The Art of Computer Programming, Volume 4, Fascicle 4,
Generating All Trees; History of Combinatorial Generation (0-321-33570-8) by Donald E.
Knuth , Copyright© 2006.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as ADDISON WESLEY.

=5 #{ A Pearson Education (FAEHH HRER) BB Fr%, TAREEHRHE,

AR, BRLER.
FHE@EmE SRHREARTESHA

ABRREINEIZE. BF. 01-2006-1931
EBERME (CIP) iR

HEIBRFRHZER £48 M. ERTAR-AGERBNHE ER) / () =
%4%¢ (Knuth,D.E.) &3, . — b PRI kMR, 2007.4

F4JFE L : The Art of Computer Proggramming, Volume 4, Fascicle 4: Generating All
Trees, History of Combiﬁgtd;‘ia‘chnmation '

ISBN 978-7-111-20825-9

Lt I.0O%- OF- ILEFEH-%. & V.TPILI
i B A B 5 HCTPRREE = (2007) 450133485

HUR T AR e simsR X & 5 B k#2228 BRB4ES 100037)

HiEHE: £ X

At EAEEN A B2 RIENR - BB kT kAT
20074E4 A 58 LRR 3 LR EN R

170mm x 242mm - 15.75E13k

EHT: 42.007C

JUAE, fanAf. B, BT, adtRTEHiEs
APk . (010) 68326294

PREFACE

| like to work in a variety of fields
in order to spread my mistakes more thinly.

— VICTOR KLEE (1999)

THIS BOOKLET is Fascicle 4 of The Art of Computer Programming, Volume 4:
Combinatorial Algorithms. As explained in the preface to Fascicle 1 of Volume 1,
I'm circulating the material in this preliminary form because I know that the
task of completing Volume 4 will take many years; I can’t wait for people to
begin reading what I’ve written so far and to provide valuable feedback.

To put the material in context, this fascicle contains Sections 7.2.1.6 and
7.2.1.7 of a long, long chapter on combinatorial searching. Chapter 7 will even-
tually fill three volumes (namely Volumes 4A, 4B, and 4C), assuming that I'm
able to remain healthy. It will begin with a short review of graph theory, with em-
phasis on some highlights of significant graphs in the Stanford GraphBase, from
which I will be drawing many examples. Then comes Section 7.1, which deals
with bitwise manipulation and with algorithms relating to Boolean functions.
Section 7.2 is about generating all possibilities, and it begins with Section 7.2.1:
Generating Basic Combinatorial Patterns. Details about various useful ways to
generate n-tuples, permutations, combinations, and partitions appear in Sections
7.2.1.1 through 7.2.1.5. That sets the stage for the main contents of the present
booklet, namely Section 7.2.1.6, which completes the study of basic patterns by
discussing how to generate various kinds of tree structures; and Section 7.2.1.7,
which completes the story of the preceding subsections by discussing the origins
of the concepts and pointing to other sources of information. Section 7.2.2 will
deal with backtracking in general. And so it will go on, if all goes well; an outline
of the entire Chapter 7 as currently envisaged appears on the taocp webpage
that is cited on page ii.

I had great pleasure writing this material, akin to the thrill of excitement
that I felt when writing Volume 2 many years ago. As in Volume 2, where I
found to my delight that the basic principles of elementary probability theory
and number theory arose naturally in the study of algorithms for random number
generation and arithmetic, I learned while preparing Section 7.2.1 that the basic
principles of elementary combinatorics arise naturally and in a highly motivated
way when we study algorithms for combinatorial generation. Thus, I found once
again that a beautiful story was “out there” waiting to be told.

In fact, I've been looking forward to writing about the generation of trees
for a long time, because: tree structures have a special place in the hearts of

v PREFACE

all computer scientists. Although I certainly enjoyed preparing the material
about classic combinatorial structures like tuples, permutations, combinations,
and partitions in Sections 7.2.1.1-7.2.1.5, the truth is that I've saved the best
for last: Now it’s time for the dessert course. Ever since 1994 I've been giving
an annual “Christmas tree lecture” at Stanford University, to talk about the
most noteworthy facts about trees that I learned during the current year, and
at last I am able to put the contents of those lectures into written form. This
topic, like many desserts, is extremely rich, yet immensely satisfying. The theory
of trees also ties together a lot of concepts from different aspects of computer
programming.

And Section 7.2.1.7, about the history of combinatorial generation, was
equally satisfying to the other half of my brain, because it involves poetry, music,
religion, philosophy, logic, and intellectual pastimes from many different cultures
in many different parts of the world. The roots of combinatorial thinking go
very deep, and I can’t help but think that I learned a lot about human beings
in general as I was putting the pieces of this story together.

My original intention was to devote far less space to such subjects. But when
I saw how fundamental the ideas were, I knew that I could never be happy unless
I covered the basics quite thoroughly. Therefore I've done my best to build a
solid foundation of theoretical and practical ideas that will support many kinds
of reliable superstructures.

I thank Frank Ruskey for bravely foisting an early draft of this material on
college students and for telling me about his classroom experiences. Many other
readers have also helped me to check the first drafts, especially in Section 7.2.1.7
where I was often operating at or beyond the limits of my ability to understand
languages other than English.

I shall happily pay a finder’s fee of $2.56 for each error in this fascicle when
it is first reported to me, whether that error be typographical, technical, or
historical. The same reward holds for items that I forgot to put in the index.
And valuable suggestions for improvements to the text are worth 32¢ each.
(Furthermore, if you find a better solution to an exercise, I'll actually reward
you with immortal glory instead of mere money, by publishing your name in the
eventual book:—)

Cross references to yet-unwritten material sometimes appear as ‘00’ in the
following pages; this impossible value is a placeholder for the actual numbers to
be supplied later.

Happy reading!

Stanford, California - D. E. K.
June 2005

PREFACE Vv

A note on notation. At the beginning of Chapter 7 I'll define some operations
on graphs for which many different notations are presently rampant. My current
plan is to say that, if G is a graph on the vertices U = {uy,...,un} and if H is
a graph on the vertices V = {v1,...,v,}, then:

e G + H is the sum, aka juxtaposition, of G and H: It has the m + n vertices
U UV and the edges of G and H.

e G F H is the cosum, aka join, of G and H, namely the complement of the
juxtaposition of their complements. (Thus its edges are those of G and H,
plus all u; — vy.)

e G x H is the Cartesian product of G and H: It has the mn vertices U x V;
its edges are (u,v) — (u',v) when u—+' in G, and (u,v) — (u,v") when
v—=2' in H.

e GO H is the direct product, aka conjunction, of G and H: Again its vertices
are U x V, but its edges are (u,v) — (¢/,?') if and only if u—' in G and
v—u' in H.

e G® H is the strong product of G and H: As its symbol implies, it combines
the edges of G x H and G O H.

e There also are coproducts, analogous to the cosum.

Other notations‘that are used in this fascicle and not otherwise explained can be
found in the Index to Notations at the end of Volumes 1, 2, or 3. Those indexes
point to the places where further information is available. Of course Volume 4
will some day contain its own Index to Notations.

CONTENTS

Preface «--coocoeeerereoesttsottoietitattitoittisattantititittinrtaatootit st iroietitttntanene

Chapter 7 Combinatorial Searching

79 Generating All Possibilities...-............

7.2.1 Generating Basic Combinatorial Patterns
7.2.1.1 Generating all n-tuples

7.2.12 Generating all PermULAtiONs ««««+«++xeeseeseesmeussumsimsmiinins
7.2.1.3 Generating all combinations «:+::«xeeeeeeeeeeeees
7.2.1.4 Generating all Partitions «««««+««-«++eeeessermmn et
72.1.5 Gcneratingallsetpartitions
72.1.6 Generating all trees -+« -« -+ seseesesresmrsumninnseninnnitiiiin

7.2.1.7 History and further references
Answers to Exercises

Index and Glossary SRS TS Beiein e ania i e mae SN R SN E RO SR PO RSP B WSS €TE, 5 8018

B X

BTE 4l AR
7.2 BeRRBiH T REE

7212 HERFAEHE
7213 HFRBIA4AAE
7214 HRHBEESX

72.1.6 HRETARM

7217 B EFn—S0R%w

7215 HERFEELSHISR] o Sog xosemmnn smnsele

I

120

120
=120

120
120
120
120
121

vin] 62
...188
227

115
117

................................-...............120
-++120
...120
...120

120
120

120

121
-162
188

227

CHAPTER SEVEN

COMBINATORIAL SEARCHING

The opening sections of this chapter will appear in Volume 4, Fascicle 0,
and Volume 4, Fascicle 1, planned for publication in 2006 and 2007.

7.2. GENERATING ALL POSSIBILITIES

7.2.1. Generating Basic Combinatorial Patterns

OUR GOAL in this section is to study methods for running through all of the
possibilities in some combinatorial universe, because we often face problems in
which an exhaustive examination of all cases is necessary or desirable.

7.2.1.1. Generating all n-tuples. Let’s start small, by considering how to
run through all 2" strings that consist of n binary digits.

7.2.1.2. Generating all permutations. After n-tuples, the next most im-
portant item on nearly everybody’s wish list for combinatorial generation is the
task of visiting all permutations of some given set or multiset.

The complete texts of Sections 7.2.1.1 and 7.2.1.2 can be found in Volume 4,
Fascicle 2, first published in February 2005.

7.2.1.3. Generating all combinations. Combinatorial mathematics is often
described as “the study of permutations, combinations, etc.,” so we turn our
attention now to combinations.

7.2.1.4. Generating all partitions. Richard Stanley’s magnificent book Enu-
merative Combinatorics (1986) begins by discussing The Twelvefold Way, a
2 x 2 x 3 array of basic combinatorial problems that arise frequently in practice.
... We’ve learned about n-tuples, permutations, combinations, and compositions
in previous sections of this chapter; so we can complete our study of classical
combinatorial mathematics by learning about the remaining entries in Stanley’s
table, which all involve partitions.

The partitions of an integer are the ways to write it as a sum of positive
integers, disregarding order.

2 COMBINATORIAL SEARCHING (F4) 7.2.1.5

7.2.1.5. Generating all set partitions. Now let’s shift gears and concentrate
on a rather different kind of partition. The partitions of a set are the ways to
regard that set as a union of nonempty, disjoint subsets.

The complete texts of Sections 7.2.1.3, 7.2.1.4, and 7.2.1.5 can be found in
Volume 4, Fascicle 3, first published in July 2005.

Explain the significance of the following sequence:
un, dos, tres, quatre, cinc, sis, set, vuit, nou, deu, ...

— RICHARD P. STANLEY, Enumerative Combinatorics (1999)

Just as in a single body there are pairs of individual members,
called by the same name but distinguished as right and left,
so when my speeches had postulated the notion of madness,
as a single generic aspect of human nature,

the speech that divided the left-hand portion

repeatedly broke it down into smaller and smaller parts.

— SOCRATES, Phaedrus 266A (c.370 B.C.)

7.2.1.6. Generating all trees. We’ve now completed our study of the classical
concepts of combinatorics: tuples, permutations, combinations, and partitions.
But computer scientists have added another fundamental class of patterns to
the traditional repertoire, namely the hierarchical arrangements known as trees.
Trees sprout up just about everywhere in computer science, as we've seen in
Section 2.3 and in nearly every subsequent section of The Art of Computer
Programming. Therefore we turn now to the study of simple algorithms by

which trees of various species can be exhaustively explored.
First let’s review the basic connection between nested parentheses and for-
ests of trees. For example,
2 345

1 678 9a b

CO)CCOYCCO O))
12 34 5 678 9a a

|ul||u,‘|u|u|luj|u|u|

~ 0
~ A
o~
~ o
~
o~
o

. (1)

7.2.1.6 GENERATING ALL TREES 3

illustrates a string containing fifteen left parens ‘(’ labeled 1, 2, ..., £, and fifteen
right parens ‘)’ also labeled 1 through f; gray lines beneath the string show how
the parentheses match up to form fifteen pairs 12, 21, 3f, 44, 53, 6a, 78, 85, 97,
a6, b9, ce, db, ed, and fc. This string corresponds to the forest

in which the nodes are @, @, , o g @ in preorder (sorted by first coor-
dinates) and @, @, , - @ in postorder (sorted by second coordinates).
If we imagine a worm that crawls around the periphery of the forest,

seeing a ‘(’ whenever it passes the left edge of a node and a ‘)’ whenever it passes
a node’s right edge, that worm will have reconstructed the original string (1).
The forest in (2) corresponds, in turn, to the binary tree

(4)

via the “natural correspondence” discussed in Section 2.3.2; here the nodes are
@, @, , e in symmetric order, also known as inorder. The left
subtree of node in the binary tree is the leftmost child of @ in the forest,
or it is an “external node” O if @ is childless. The right subtree of @ in the
binary tree is its right sibling in the forest, or [J if @ is the rightmost child in
its family. Roots of the trees in the forest are considered to be siblings, and the
leftmost root of the forest is the root of the binary tree.

4 COMBINATORIAL SEARCHING (F4) 7.2.1.6
Table 1
NESTED PARENTHESES AND RELATED OBJECTS WHEN n — 4
a1asz...ag forest binary tree didodsds 21222324 P1p2p3pa ciczczcs matching

o

O0OO soes % 1111 1857 1284 0000y A
s

00w **3 % 1102 1356 1243 0001 {/\
o~

0o 1 JZ}: 1021 1347 1324 0010 {'\-
N

00 * A E"K\, 1012 1346 1342 0011 {/-
. o«

0wo»n °} JE\, 1003 1345 132 o012 <.

(OO0 pee J{}h 0211 1257 2134 0100y /

(W) 11 ;{b 0202 1256 2143 0101 f/f
~

MO A @ 0121 1247 214 010 4\

o~

OO Jg\’ 0112 1246 2341 o1 J 7
. .._/

0w» A JE“’ 0103 1245 2431 0112 -/'[
fe

«ono } - @ 0031 1237 3214 0120 \\\\

oy N Jffu 0022 1236 3241 o121 4 \}
S

«won i "ié 0013 1235 3421 oz LV
o

e

(O A{O 0004 1234 4321 0123 f\\“-
X

A string ajaz...as, of parentheses is properly nested if and only if it
contains n occurrences of ‘(’ and n occurrences of *)’, where the kth ‘(’ precedes
the kth)’ for 1 < k < n. The easiest way to explore all strings of nested paren-
theses is to visit them in lexicographic order. The following algorithm, which
considers ‘)’ to be lexicographically smaller than ‘(’, includes some refinements
for efficiency suggested by I. Semba [Inf. Processing Letters 12 (1981), 188-192:

7.2.1.6 GENERATING ALL TREES 5

Algorithm P (Nested parentheses in lexicographic order). Given an integer

n > 2, this algorithm generates all strings ajas . ..ag, of nested parentheses.

P1. [Initialize.] Set agx—1 + ‘C and agx <)’ for 1 < k < n; also set ag «)’
and m ¢ 2n — 1.

P2. [Visit.] Visit the nested string aias...az,. (At this point a,, = ‘C, and
ar =) form < k < 2n.)

P3. [Easy case?] Set a,, « *)'. Thenifap_1 =)', set a1 + ‘'C, m < m—1,
and return to P2.

P4. [Find j.| Set j « m —1 and k + 2n — 1. While a; = ‘C, set a; «+),
ap <+ ‘C,j+j—1,and k + k — 2.

P5. [Increase aj.] Terminate the algorithm if j = 0. Otherwise set a; « ‘C,
m <« 2n — 1, and go back to P2. |

We will see later that the loop in step P4 is almost always short: The operation

aj < ‘)’ is performed only about % times per nested string visited, on the average.

Why does Algorithm P work? Let A, be the sequence of all strings o that
contain p left parentheses and q > p right parentheses, where (" Pa is properly
nested, listed in lexicographic order. Then Algorithm P is supposed to generate
Ann, where it is easy to see that A, obeys the recursive rules

Apg =) Apg-1), (Ap-r)g, HO0<Pp<g#0; A =¢ (5)

also Ap, is empty if p < 0 or p > g. The first element of A, is Y ITPI0) s,
where there are p pairs ‘()’; the last element is (P)?. Thus the lexicographic
generation process consists of scanning from the right until finding a trailing
string of the form a;...az, =)(P*!)? and replacing it by § Linm $TTT O
Steps P4 and P5 do this efficiently, while step P3 handles the simple case p = 0.

Table 1 illustrates the output of Algorithm P when n = 4, together with the
corresponding forest and binary tree as in (2) and (4). Several other equivalent
combinatorial objects also appear in Table 1: For example, a string of nested
parentheses can be run-length encoded as

QRO .0, (6)
where the nonnegative integers d;ds . . .d, are characterized by the constraints
di+day+---+dp <k forl<k<mn; dy+do+--+d,=n. (7)

We can also represent nested parentheses by the sequence 2z123...2n, wWhich
specifies the indices where the left parentheses appear. In essence, 2123 ...2, is
one of the (2:) combinations of n things from the set {1,2,...,2n}, subject to
the special constraints

Zh—1 < 25.Z. 2k for 1 <k <n, (8)
if we assume that zo = 0. The 2’s are of course related to the d’s:
dy = 2g41— 2 —1 for 1 <k <n. (9)

Algorithm P becomes particularly simple when it is rewritten to generate the
combinations 2123 . .. 2z, instead of the strings a;a; ...az,. (See exercise 2.)

6 COMBINATORIAL SEARCHING (F4) 7.2.1.6

A parenthesis string can also be represented by the permutation pips . ..pn,
where the kth right parenthesis matches the prth left parenthesis; in other words,
the kth node of the associated forest in postorder is the pxth node in preorder.
(By exercise 2.3.2-20, node j is a descendant of node k in the forest if and only
if j < k and p; > pi, when we label the nodes in postorder.) The inversion table
ciCs . . . cn characterizes this permutation by the rule that exactly cx elements to
the right of k are less than k (see exercise 5.1.1-7); allowable inversion tables
have ¢; = 0 and

0 < cpy1 < cp+1 for 1 <k <n. (10)

Moreover, exercise 3 proves that ci is the level of the forest’s kth node in preorder
(the depth of the kth left parenthesis), a fact that is equivalent to the formula

cr =2k—1— z. ‘ (11)

Table 1 and exercise 6 also illustrate a special kind of matching, by which 2n
people at a circular table can simultaneously shake hands without interference.

Thus Algorithm P can be useful indeed. But if our goal is to generate all
binary trees, represented by left links l;ls...l, and right links ryry...7,, the
lexicographic sequence in Table 1 is rather awkward; the data we need to get
from one tree to its successor is not readily available. Fortunately, an ingenious
alternative scheme for direct generation of all linked binary trees is also available:

Algorithm B (Binary trees). Given n > 1, this algorithm generates all binary

trees with n internal nodes, representing them via left links l41l5...l, and right

links 7173 ...7T,, with nodes labeled in preorder. (Thus, for example, node 1 is

always the root, and lj is either k + 1 or 0; if /; = 0 and n > 1 then r; = 2.)

B1. [Initialize.] Set lx < k+ 1 and ri « 0 for 1 < k < n; also set I, - r, < 0,
and set 41 + 1 (for convenience in step B3).

B2. [Visit.] Visit the binary tree represented by l1ly...1, and ri7a...7p.
B3. [Find j.] Set j < 1. Whilel; =0,set r; < 0,0; + j+1,and j < j+ 1.
Then terminate the algorithm if 7 > n.

B4. [Find k and y.| Set y «— [and k <~ 0. While 7, > 0, set k < y and y < 7.

B5. [Promote y.] If k > 0, set ry « 0; otherwise set I; < 0. Then set ry + r;j,
Tj < y, and return to B2. |

[See W. Skarbek, Theoretical Computer Science 57 (1988), 153-159; step B3
uses an idea of J. Korsh.] Exercise 44 proves that the loops in steps B3 and B4
both tend to be very short. Indeed, fewer than 9 memory references are needed,
on the average, to transform a linked binary tree into its successor.

Table 2 shows the fourteen binary trees that are generated when n = 4,
together with their corresponding forests and with two related sequences: Arrays
e1€3...en, and 8185 . .. s, are defined by the property that node k in preorder has
ex children and s descendants in the associated forest. (Thus sy is the size of ks
left subtree in the binary tree; also, sx + 1 is the length of the SCOPE link in the
sense of 2.3.3—(5).) The next column repeats the fourteen forests of Table 1 in
the lexicographic ordering of Algorithm P, but mirror-reversed from left to right.

7.2.1.6

Table 2

GENERATING ALL TREES 7

LINKED BINARY TREES AND RELATED OBJECTS WHEN n = 4

Lilalsly

2340

0340

2040

2040

0040

2300

0300

2300

2300

0300

2000

2000

2000

0000

T1T2T3T4

0000

2000

0300

3000

2300

0040

2040

0400

4000

2400

0340

4300

3040

2340

binary tree forest ejezeses

F DAY DR ANANT IS

:
I
A

e
*e

.I.

1110

0110

2010

1010

0010

1200

0200

2100

1100

0100

3000

2000

1000

0000

81828384

3210

0210

3010

1010

0010

3200

0200

3100

2100 -

0100

3000

2000

1000

0000

colex forest

Isib/rchild

AN AN DT D DY P

And the final column shows the binary tree that represents the colex forest; it
also happens to represent the forest in column 4, but by links to left sibling and
right child instead of to left child and right sibling. This final column provides an
interesting connection between nested parentheses and binary trees, so it gives
us some insight into why Algorithm B is valid (see exercise 19).

8 COMBINATORIAL SEARCHING (F4) 7.2.1.6

*Gray codes for trees. Our previous experiences with other combinatorial
patterns suggest that we can probably generate parentheses and trees by making
only small perturbations to get from one instance to another. And indeed, there
are at least three very nice ways to achieve this goal.

Consider first the case of nested parentheses, which we can represent by
the sequences z;2z3...2, that satisfy condition (8). A “near-perfect” way to
generate all such combinations, in the sense of Section 7.2.1.3, is one in which
we run through all possibilities in such a way that some component z; changes
by %1 or £2 at each step; this means that we get from each string of parentheses
to its successor by simply changing either () <>)(or ()) <))(in the vicinity
of the jth left parenthesis. Here’s one way to do the job when n = 4:

1357,1356, 1346, 1345, 1347, 1247,1245, 1246, 1236, 1234, 1235, 1237, 1257, 1256.

And we can extend any solution for n — 1 to a solution for n, by taking each
pattern z;2; ... 2,—1 and letting z, run through all of its legal values using endo-
order or its reverse as in 7.2.1.3—(45), proceeding downward from 2n—2 and then
up to 2n — 1 or vice versa, and omitting all elements that are < z,_;.

Algorithm N (Near-perfect nested parentheses). This algorithm visits all n-
combinations 2; ...z, of {1,...,2n} that represent the indices of left parentheses
in a nested string, changing only one index at a time. The process is controlled
by an auxiliary array g; ...g, that represents temporary goals.

N1. [Initialize.] Set z; <~ 2j —1 and g; < 2j —2for 1 < j < n.
N2. [Visit.] Visit the n-combination z; ...z2,. Then set j + n.

N3. [Find j.] If z; = g;, set g; « g; ® 1 (thereby complementing the least
significant bit), 7 < j — 1, and repeat this step. ’

N4. [Home stretch?] If g; — z; is even, set z; + z; + 2 and return to N2.

N5. [Decrease or turn.] Set t « z; —2. If t < 0, terminate the algorithm.
Otherwise, if t < z;_1, set t « t + 2[t < zj_1] + 1. Finally set z; « t and
go back to N2. |

[A somewhat similar algorithm was introduced by D. Roelants van Baronaigien in
J. Algorithms 35 (2000), 100-107; see also Xiang, Ushijima, and Tang, Inf. Proc.
Letters 76 (2000), 169-174. F. Ruskey and A. Proskurowski, in J. Algorithms
11 (1990), 68-84, had previously shown how to construct perfect Gray codes
for all tables 2, ...z, when n > 4 is even, thus changing some z; by only +1
at every step; but their construction was quite complex, and no known perfect
scheme is simple enough to be of practical use. Exercise 48 shows that perfection
is impossible when n > 5 is odd.]

If our goal is to generate linked tree structures instead of strings of paren-
theses, perfection of the z-index changes is not good enough, because simple
swaps like () +)(don’t necessarily correspond to simple link manipulations. A
far better approach can be based on the “rotation” algorithms by which we were

7.2.1.6 GENERATING ALL TREES 9

able to keep search trees balanced in Section 6.2.3. Rotation to the left changes
a binary tree

from ©

thus the corresponding forest is changed

fom & \@‘ . e@” -

“Node @ becomes the leftmost child of its right sibling.” Rotation to the right
is, of course, the opposite transformation: “The leftmost child of becomes
its left sibling.” The vertical line in (12) stands for a connection to the overall
context, either a left link or a right link or the pointer to the root. Any or all
of the subtrees a, i, or w may be empty. The ‘---’ in (13), which represents
additional siblings at the left of the family containing , might also be empty.

The nice thing about rotations is that only three links change: The right
link from @, the left link from , and the pointer from above. Rotations
preserve inorder of the binary tree and postorder of the forest. (Notice also that
the binary-tree form of a rotation corresponds in a natural way to an application
of the associative law

(ap)w = a(pw) - (14)
in the midst of an algebraic formula.)

A simple scheme very much like the classical reflected Gray code for n-tuples
(Algorithm 7.2.1.1H) and the method of plain changes for permutations (Algo-
rithm 7.2.1.2P) can be used to generate all binary trees or forests via rotations.
Consider any forest on n — 1 nodes, with k roots , . 9] . Then there are
k+ 1 forests on n nodes that have the same postorder sequence on the first n —1
nodes but with node @ last; for example, when k = 3 they are

obtained by successively rotating , , and @ to the left. Moreover, at
the extremes when is either at the right or at the top, we can perform
any desired rotation on the other n — 1 nodes, because node @ isn’t in the
way. Therefore, as observed by J. M. Lucas, D. Roelants van Baronaigien, and
F. Ruskey [J. Algorithms 15 (1993), 343-366], we can extend any list of the
(n — 1)-node trees to a list of all n-node trees by simply letting node @ roam

10 COMBINATORIAL SEARCHING (F4) 7.2.1.6

back and forth. A careful attention to low-level details makes it possible in fact
to do the job with remarkable efficiency:

Algorithm L (Linked binary trees by rotations). This algorithm generates all
pairs of arrays loly ...l, and 7y ...7, that represent left links and right links of
n-node binary trees, where lo is the root of the tree and the links (g, 7) point
respectively to the left and right subtrees of the kth node in symmetric order.
Equivalently, it generates all n-node forests, where /; and i denote the left child
and right sibling of the kth node in postorder. Each tree is obtained from its pre-
decessor by doing a single rotation. Two auxiliary arrays k; . .. kn, and 0901 . .. 0n,
representing backpointers and directions, are used to control the process.
L1. [Initialize.] Set l; + 0, rj — j+ 1, kj = j—1,and 0 « —1for 1 <j <m;
also set lg 09 + 1, I, & 71 < 0, kp < n—1, and 0, < —1.
L2. [Visit.] Visit the binary tree or forest represented by loly ...ln and ry...7y.
Then set j < n and p < 0.

L3. [Find j.] If o; > 0, set m « [; and go to L5 if m # 0. If o; <0, set m « ki
then go to L4 if m # 0, otherwise set p - j. If m = 0 in either case, set
0j < —0j, j + j — 1, and repeat this step.

L4. [Rotate left.] Set rp < lj, l; < m, T « kp, and k; < . If x = 0, set
lp + j, otherwise set r; « j. Return to L2.

L5. [Rotate right.] Terminate if j = 0. Otherwise set lj < Tm, 'm < J, kj < m,
T + kp. If z =0, set I, < m, otherwise set r; < m. Go back to L2. 1|

Exercise 38 proves that Algorithm L needs only about 9 memory references per
tree generated; thus it is almost as fast as Algorithm B. (In fact, two memory
references per step could be saved by keeping the three quantities on, l», and kn
in registers. But of course Algorithm B can be speeded up too.)

Table 3 shows the sequence of binary trees and forests visited by Algorithm L
when n = 4, with some auxiliary tables that shed further light on the process.
The permutation g;g2qsgs lists the nodes in preorder, when they have been
numbered in postorder of the forest (symmetric order of the binary tree); it
is the inverse of the permutation p;pspsps in Table 1. The “coforest” is the
conjugate (right-to-left reflection) of the forest; and the numbers ujususuy are
its scope coordinates, analogous to s;szs3s4 in Table 2. A final column shows
the so-called “dual forest.” The significance of these associated quantities is
explored in exercises 11-13, 19, 24, 26, and 27.

The links lgl; ...l and 7q...7, in Algorithm L and Table 3 are not com-
parable to the links l;...l, and r1...7 in Algorithm B and Table 2, because
Algorithm L preserves inorder/postorder while Algorithm B preserves preorder.
Node k in Algorithm L is the kth node from left to right in the binary tree, so
lo is needed to identify the root; but node k in Algorithm B is the kth node in
preorder, so the root is always node 1 in that case.

Algorithm L has the desired property that only three links change per step;
but we can actually do even better in this respect if we stick to the preorder
convention of Algorithm B. Exercise 25 presents an algorithm that generates

