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A Brief Survey of Block Toeplitz
Iterative Solvers

Xiao-Qing JIN,* Kit-ITan KOU

{Faculty of Science and Technology, University of Macau, Macau, P. R. China)

Abstract In this expository paper, we survey some of the latest developments and
applications by using the preconditioned conjugate gradient method for solving block
Toeplitz systems. One of the main results is that the complexity of solving a large class
of mn-by-mn block Toeplitz systems can be reduced to O(mnlog mn) operations. Dif-
ferent preconditioners proposed for different block Toeplitz systems are reviewed. Some
applications are studied. These applications include numerical differential equations and
image processing.

Keywords block toeplitz matrices, preconditioners, preconditioned conjugate gradient
method, multigrid method, differential equations, image processing

AMS(MOS) Subject Classifications. 45F10, 62F10, 65F10, 65N22, 65P05

1 Introduction

An n-by-n Toeplitz matrix is of the following form

to t-1 - ta_p tig
t1 to t——l ot t2—n
T, = (3] to . s (1)
th—2 t_1
tpe1 tp—2 -+ 11 to

i.e., Ty, is constant along its diagonals. An mn-by-mn block Toeplitz matrix is of the following

Y e RHEE, I FAH R R, HERRBEFTEASLH8, F2000412 AA ek, b
B RFHE, AL R,




form

Toy T-ny - Te-m) Ta-m
Ty Ty - Te-m
Tyn = ) (2)
Tm-zy - T Ty
Tm-1) Tem—2 - Ty T
where T(;, i = *1,---, +(m — 1), are arbitrary n-by-n matrices. Particularly, if T'p,p, is a

block Toeplitz matrix with the Toeplitz blocks T(;, for i = £1,---,£(m — 1), then T, is
said to be a BTTB matrix.

Block Toeplitz systems arise in a variety of applications in mathematics, scientific com-
puting and engixleel'ing[16]’[48]. These applications have motivated mathematicians, scientists
and engineers to develop fast and specific algorithms for solving block Toeplitz systems. Such
kind of algorithins are called the block Toeplitz solvers.

Most of the current research works on block Toeplitz solvers are focused on iterative
method, especially on the preconditioned conjugate gradient (PCG) method. One of the
main important results of this methodology is that the complexity of solving a large class
of block Toeplitz systems can be reduced to O(mnlogmn) operations provided that suitable
preconditioners are chosen under certain conditions defined on Toeplitz systems. In this pa-
per, we will survey some recent results of these iterative block Toeplitz solvers. Applications
to some practical problems will also be reviewed.

1.1 Background

Let us begin by introducing the background knowledge that will be used throughout the
article. We assume that the diagonals {t;}7_", 41 of Ty, in (1) are the Fourier coefficients of

a function f, i.e.,

ty =t (f) = % _W f(x)e "o dg, i=+/—1.

The f is called the generating function of T, and assumed in certain class of functions
such that all the T, are invertible. In practical problems from industry and engineering, we
are usually given f first, not the Toeplitz matrix T',, see [16].

In order to analyse the convergence rate of the conjugate gradient (CG) method, we need
to introduce the following definition of clustered spectrum[16].

Definition 1.1  The eigenvalues of a sequence of matrices {H,}32, are said to be
clustered around a point v € R if for any £ > 0, there exist positive integers M and N such
that for all n > N, at most M eigenvalues of H,, — vI, have absolute values greater than ¢,
where I, is the identity matrix.

If the eigenvalues of {H,}52, are clustered around a point -y, then the CG method has a
fast convergence rate by the following theorem given by Van der Vorst! 701,

. D .




Theorem 1.1  Let u* be the k-th iterant of the CG method applied to the system
Hpu = b and let @ be the true solution of the system. If the eigenvalues \; of H, are

ordered such that

0<A <. < /\p < b1 < )‘p+1 <..Z /\n-—q < b2 < )\n—q+1 <. < )\na

then k—p—q »
—uk —1\"7F" A=A
lu —ud|| = a+1 ,\e[bl,b2]j=1 Aj
Here || - || is the energy norm given by ||v||*> = v* H,v (“+” denotes conjugate transposition)

and a = (%12)% > 1.

From Theorem 1.1, we know that the more clustered the eigenvalues are, the faster the
convergence rate will be. Unfortunately, the spectra of matrices are not clustered around a
certain point in general. Thus, the convergence rate of the CG method is slow usually. In
order to accelerate the convergence rate, we need to precondition the system, i.e., instead of
solving the original system H,u = b, we solve the following preconditioned system

M;'H,u = M;'b. (3)
The preconditioner M, is chosen with two criteria in mind, see [29):
I M,r =d is easy to solve;

I the spectrum of M, ' H,, is clustered and (or) M, H,, is well-conditioned compared
to H,.

The main work involved in implementing the CG method to the preconditioned system
(3) is the matrix-vector product M ' H,,v for some vector v. We will show that for Toeplitz
matrices with circulant preconditioners, the cost of this matrix-vector product can be reduced
dramatically.

1.2 Circulant preconditioners
In 1986, Strang [62] and Olkin [55] proposed independently the use of the PCG method

with circulant matrices as preconditioners for solving Toeplitz systems. The circulant matrix
is defined as follows:

Co Cn—1 C2 1
5] o Cn—1 C2
Cn= cl co
Cn—2 T . - Cp—1
Cn—1 Cp-2 - C1 Co

It is well-known that circulant matrices can be diagonalized by the Fourier matrix F,,,
see [26], i.e.,
C,=F:A,F,. (4)

e 3 .




Here the entries of F',, are given by
1 .
(Fr)jk = ——\/He%”k/”, i=v-1,

with 0 < 7,k <n —1 and 4, is a diagonal matrix holding the eigenvalues of C,. In [62] and
[65], Strang and Olkin noted that for any Toeplitz matrix T, with a circulant preconditioner
C,, the product C;'T,v can be computed in O(nlogn) operations for any vector v as
circulant systems can be solved efficiently by the Fast Fourier Transform (FFT) and the
multiplication T'pv can also be computed by FFTs by first embedding T, into a 2n-by-2n
circulant matrix. More precisely, we have a 2n-by-2n circulant matrix with T',, embedded

(% 2)(0)-(")
x T, 0/ T ’
and then the multiplication can be carried out by using the decomposition as in (4). The
operation cost is, therefore, O(2nlog(2n)). Thus, the cost per iteration of the PCG method
is still O(nlogn).
A lot of circulant preconditioners have been proposed for solving Toeplitz systems since
1986. We introduce some of them which have been proved to be good preconditioners.

inside as follows,

1.2.1 Strang’s circulant preconditioner

For Toeplitz matrix (1), Strang’s preconditioner s(T,) is defined to be the circulant matrix
obtained by copying the central diagonals of T',, and bringing them around to complete the
circulant. More precisely, the diagonals of s(T',,) are given by

tkw OSkSLn/z_]v
Sk =19 th-n, In/2] <k <m, (5)
Sn+k, 0< -k <n.

1.2.2 T. Chan’s circulant preconditioner
Let
My = {U"A,U | Ay is an n-by-n diagonal matrix}, (6)
where U is an n-by-n unitary matrix. We note that when U = F, the Fourier matrix, M g
is the set of all circulant matrices, see [26]. For an n-by-n Toeplitz matrix T',, T. Chan’s
circulant preconditioner cF(Tn)[23] is defined to be the minimizer of the Frobenius norm

ITn - Wlp (1)

over all W € M. The matrix cp(T,) is called the optimal circulant preconditioner in [23].
The diagonals of cr(T'y,) are just the average of the diagonals of T',,, with the diagonals being
extended to length n by a wrap-around. More precisely, the diagonals of cg(T',,) are given by

(n — Yty + kty—n
Cp = {

- , 0<k<n, (8)
Cntk, O0< —-k<n.

When T',, is a general matrix, the circulant minimizer ¢g(T',) of (7) can still be defined by
taking the arithmetic average of the entries along the diagonal of T',,.

. 4 .




1.2.3 R. Chan’s circulant preconditioner
R. Chan’s preconditioner r(T',,) proposed in [7] is defined as follows. For T',, given by (1),
the preconditioner »(T',,) is the circulant matrix with diagonals:

_ ] tk—n + 0<k<n,
k= { Tty 0< —k<n, ©

where t_,, is taken to be 0.
1.2.4 Huckle’s circulant preconditioner
For T, given by (1), Huckle’s preconditioner H? is defined to be the circulant matrix

with eigenvalues

p—1 .
1\ omij
Ae(HY) = Z t (1—; ATk k=0, n— 1.

Jj=-pt+1

When p = n, it is nothing new but T. Chan’s preconditioner.

If the generating function f of T, is positive and smooth, then the PCG method with
these circulant preconditioners has been proved to be a successful method which converges
superlinearly, see [16]. Therefore, the operation cost of the algorithm will remain O(nlogn).

1.3 Non-circulant optimal preconditioners

Besides FF'T, there are a lot of fast transforms used in scientific computing and engineering.
With the U in (6) taking other matrices based on different fast transforms, we then have new
classes of optimal preconditioners for solving Toeplitz systems.

1.3.1 Optimal preconditioner based on fast transform

Let Mga in (6) with U = @ be the set of all n-by-n matrices that can be diagonalized

by the matrix #2, i.e.,

Mga = {(*)T A, | A, is an n-by-n diagonal matrix}.

For a = s, the (j, k)-th entry of the sine transform matrix &° is defined by

2 sin mik
n+1 n+1/)’

for 1 < j,k < n. For a = ¢, the (j, k)-th entry of the cosine transform matrix #¢ is defined

by \/Q—_Fcos ((j - 1)21147 - 1)7r> ,

for 1 < 4,k < n, where §;; is Kronecker delta. Moreover, for a = h, the (J, k)-th entry of the
Hartley transform matrix @” is defined by

icos —27rjk +—1—sin __27rjk
vn n N n )’

for0<j,k<n-1.




Given any arbitrary n-by-n matrix A,, we define an operator ¥, which maps A, to
the matrix ¥,(A,) that minimizes ||A,, — B,l||r over all matrices B, € Mga. For the
construction of matrix ¥,(A,) with a = s, ¢, h, we refer to [4, 11, 18].

1.3.2 Convergence result and operation cost

Let Ca, be the set of all 2n-periodic continuous real-valued functions defined on [—m, 7]
and f be the generating function of T',. For the convergence rate of the PCG method with
the optimal preconditioners based on fast transforms, we have the following theorem, see
[18, 11, 41).

Theorem 1.2  Let f € Ca, be an even positive function. Then the spectra of
(Pa(Tn)) ™' Ty

are clustered around 1 for large n, where a = s, ¢, h. Thus, the convergence rate of the PCG
method is superlinear.

In each iteration of the PCG method, we have to compute matrix-vector multiplication
T',v and solve the system ¥, (T,)y = u. The T v can be computed in O(n log n) operations.
The system ¥,(T,)y = u can also be solved in O(nlogn) operations by using the fast sine
transform for ¥,(T,) € Mgs; by using the fast cosine transform for ¥.(T,) € Mg-; or by
using the fast Hartley transform for ¥, (T,) € M gn.

2 Block Preconditioners

Let us consider a general block system Hp,u = b first, where H,, is an mn-by-mn
matrix partitioned as

H,, Hy, -+ Hyn

H,;, H;, -+ Hjyp
Hmn = . . . .

Hm,l Hm,‘z ot Hm,m

and the blocks H; ; with 1 <4, < m are square matrices of order n.
2.1 Block preconditioners for block systems
Several preconditioners that preserve the block structure of H p,, are constructed in [13].

In view of the point case in Section 1.2.2, it is natural to define the circulant-block precondi-
tioner of H p,, as follows,

cr(H11) crp(Hyp) cr(Hym)

cr(Haz1) cp(Hap) cr(Ha,m)
cg)(Hmn) = : . . : " bl

C.F'(Hm,l) CcF (Hm,2) et CF (Hm,m)




where the blocks ¢p(H; ;) defined as in (8) are just T. Chan’s circulant preconditioners of
H,;,;, 1<14,7 <m. Actually, the matrix c}l.)(Hmn) is the minimizer of

N E]
”Hmn - W‘mn”F

over all matrices W ,,,, that are m-by-m block matrices with n-by-n circulant blocks. It can
be viewed as an approximation of H,, long one specific direction.

It is therefore natural to consider the preconditioner that results from an approximation
of Hp,, along the other direction. Let (H,»)i,j;:x,; denote the (z,7)-th entry of the (k,!)-th
block of H,,, and let P be the permutation matrix that satisfies

(P"Hpn P)igsi; = (Hmn)ijik s (10)

for 1 < 14,5 < n,1 < k,I <m. The preconditioner Eg)(H mn) 18 & block-circulant matrix
which is defined as
EV(H ) = PV (PH PP

(1)
F

With the composite of operators ¢’ and ég), one can obtain a preconditioner

cg)F(Hmn) = éfpl) o c(F%)(Hmn)

which is based on circulant approximations within each block and also on block level. The
preconditioner c(FZ)F(H mn) i said to be a BCCB matrix. Actually, it is the minimizer of
|H pmpn — Wonn|lr over all W, € Mpgr. Here

Mrogr = {(Fm ® Fp)" Apn (Fr, ® Fp) | Apyy, is a diagonal matrix}

where ® denotes the tensor product and F,,, F, are Fourier matrices. We note that M FQF
is the set of all BOCCB matrices, see [26]. The BCCB preconditioners for solving BTTB
matrices have been investigated in [13, 24, 52, 67].

Since any BCCB matrix C,,, can be diagonalized by the 2-dimensional Fourier matrix,

Cmn = (F:n ®F;)Amn(Fm ®Fn)

where A,y is a diagonal matrix holding the eigenvalues of C,,,, therefore, the matrix-vector
multiplication Cp,»v can be computed in O(mn log mn) operations by using the 2-dimensional
FFT. We note that the relation between the first column and the eigenvalues of C,,,, is given
by

mcmnel = (F:n ® F;)Amnlmm (11)
where e; and I, denote the first unit vector and the vector of all 1’s respectively. Thus,
Amn can be obtained in O(mnlogmn) operations by taking 2-dimensional FFTs of the first
column of C,,,. Moreover, an mn x mn BTTB matrix can be enlarged into a 4mn x 4mn
BCCB matrix, so it can also be multiplied by a vector in O(mnlogmn) operations, see [13].

2.2 Convergence rate and operation cost




We analyse the convergence rate and operation cost of the PCG method when applied to
solving BTTB systems T',ntt = b. Let the entries of Ty, be denoted by

5)
Ton)pgrs = 07,

for 1 <p,g<mn,1 <rs<m. The Ty, is associated with a generating function f(z,y) as
follows,

t;ij)(f / f(z,y)e T HE) gz dy, 1=+/-1.
47T2 -7 —7
We note that for any m and n, T',,’s have the following important properties:
(1) When f is real-valued, then T, (f) are Hermitian, i.e., tgcj) (f)= f(_—kj) (.

(2) When f is real-valued with f(z,y) = f(—z, —y), then T, (f) are real symmetric, i.e.,
(1) =50 &),

(3) When f is real-valued and even, ie., f(z,y) = f(|z|,|y]), then Tpn(f) are level-2
symmetric, i.e., tfc’)(f) = t(“l)(f)

Let Carx2r denote the Banach space of all 2n-periodic (in each direction) continuous real-
valued functions equipped with the supremum norm ||| - |||cc. The following theorem gives
the relation between the values of f(z,y) and the eigenvalues of Tp,,(f), see [42, 60].

Theorem 2.1 If f € Canxar With fryin < fmax Where fuin and fnax denote the min-
imum and maximum values of f respectively, then for all positive integers m and n, we
have

Smin < Ai(Tmn) < fmax for i=1,---,mn,

where A;(T.,) is the i-th eigenvalue of T,,,,. Moreover,

lim /\max (Tmn) = fmax and hmoo Amin (Tmn) fmin-

m,n— m,n~>

From theorem 2.1, we know that if f > 0, then T',,,,(f) is always positive definite. When
f vanishes at some points (zo,y0) € [~, 7] x [-7, 7], then the condition number &(T,,) of
Ty is unbounded as m or n tend to infinity, i.e., Ty,, is ill-conditioned.

Now, let us consider the class of level-2 symmetric BT'TB systems

Tonu=150 (12)
where
Ty Ta - Tim-z) Tim-y
Toy To 7 Ty
Tmn = : ’ ’ :
Tmoay - - T  Tq
Ty Tim-zy - Ty T
and the blocks T'(;), for i = 0,---,m — 1, are themselves symmetric Toeplitz matrices of order

n. For solving (12), by using the PCG method with the preconditioners c (Tmn) (1)(Tmn)

.8 .




and cg)F(Tmn) respectively, the cost per iteration requires O(mn log> m + mnlogn),
O(nm 1£)g2 n + nmlogm) and O(mnlogmn) operations accordingly, see [13].

The convergence rate of the PCG method was also analysed by R. Chan and Jin
solving (12). It was shown that if the generating function f > 0 is in Carx24, then the spectra
of preconditioned matrices (c;})(Tmn))_len, (ég)(T,nn))_len and (cg)F(T,,m))_len
are clustered and the method converges linearly. Thus, the total operation cost for solving
(12) only requires O(mnlog? m +mnlogn), O(nm log® n + nmlogm) and O(mnlogmn) op-
erations accordingly, see [13]. This is one of main important results of the PCG algorithm.
However, Serra and T yrtyshnikov[m] proved theoretically that any multilevel circulant pre-
conditioners for multilevel Toeplitz matrices can not produce a superlinearly convergence rate
by using the PCG algorithms. The works on other types of block preconditioners can be found
in [16, 48].

[13, 48; for

3 BCCB Preconditioners from Kernels

A unified treatment of constructing circulant preconditioners from kernel functions was
first introduced by R. Chan and Yeung[22]. This idea was then generalized to the block ma-
trix case by Jin in [47]. Let Ty, (f) be the BTTB matrix generated by a function f.

3.1 BCCB preconditioners constructed from kernels

As analogous to cg’)F(Tmn), we can define Strang’s, R. Chan’s BCCB preconditioners for

the BTTB matrix T,,,. For instance, we define the preconditioner sg) (T'mn) as follows,

ng); S((I;S—-l))) Sgu—m))
sg)(Tmn) = ’ ;(1) ’ .'(0) . ’ (2:—m))
S(T(m—l)) S(T(m—Z)) T S(T(O))

where the blocks s(T'(;)) defined in (5) are just Strang’s circulant preconditioners of T';), for
i =0,%1,---,4+(m —1). Let P be the permutation matrix given by (10). The preconditioner
5(1)(T ) is defined as
F mn
50 (Trmn) = P*s) (PT n P*)P.
With the composite of operators 39) and 59’ , one can obtain Strang’s BCCB preconditioner

sip (Tmn) = 85 0 53! (T ).
R. Chan’s BCCB preconditioner rg)F(Tmn) can be defined similarly by using (9). Since
any BCCB matrix can be determined by its first column, from (11), we know that once the
eigenvalues of the BCCB matrix are obtained, one can get the first column of the BCCB matrix
easily by using 2-dimensional FFTs. In the following, we will construct the eigenvalues of
some well-known BCCB preconditioners from the viewpoint of convolution of the generating
function with some famous kernels.




