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Abstract

It is always used to approximate to the series by the partial sum
of the Taylor series in numerical calculus, and the many effective
methods of the numerical calculus can be obtained. Much remark-
able achievement has been gained from the methods, but there are
the weaknesses of the slowness of the rate of convergence and the
narrowness of the range of convergence of the Taylor series. The
satisfying results can be arrived when the rational function is used
as the approximation tool.

The Padé approximation is a very useful and effective method
to get the approximation of the rational function from a power se-
ries. The essential conception of the Padé approximation is that to
structure the rational function which called the Padé approximant
form for a given formal power series,to make the most terms being
the same of the power series.

In 1821, Cauchy researched the recurring series in his famous
< Cours d’Analyses>>. He extended the Lagrange interpolation for-

mula to the rational interpolation in N poles. He established the
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foundation of the theory.of the Padé approximations. In 1846, Ja-
cobi found the Padé approximation formula based on the Cauchy
works, Jacobi proposed some determinant representations for the
problem of the rational interpolation, and considered the extremely
situation of the all interpolation points to coincide with the origin.
In 1881, Frobenius researched the algebraic properties of the Padé
approximations, presented the identity of the denominator and the
numerator of the Padé approximation in the different degrees. In
1892, H. Padé independently constructed again the Padé approxi-
mation formula [m/n]s, presented the three dimensional Padé ap-
proximation table according to the permutation of the m and the n.
He also systematically researched the structure of the Padé tables.

Since the 1970s, the method of the Padé approximation has
been applied with considerable success to the solution of a varicty of
fields numerical analysis, the study of critical states, quantum field
theory, cybernetics. And the theory of the Padé approximations
has been developed.

Integral equation is the important branch of mathematics. Maﬁy
problems of mathematics, natural science, and engineering can be
attributed to the problems of integral equation.

The definition of the Fredholm integral equation of the second
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kind is:

o) =10+ [ Kt0ptrlar, 1)
here ¢(¢) is an unknown func_tion, A is a parameter, k(t,7), f(t)
are known functions, k(t,7) is called the kernel of the equation (1),
f(t) is called the free term of the equation (1).

The equation (1) is changed the form of operators:
(I-7K) = f, (@)

here I is an identity operator, K is a linear integral operator defined
by kernel k(t,T).
From the property of the series of operator in spaces C|a, b] or

Ls[a, b], it is known:
e .
(I-AK)™ = NKI.
=0
From the theory of integral equations, when [|AK|| = |\|||K|| <

1, the Fredholm integral equation of the second kind (1) in spaces

Cla,b] or La[a,b] has the unique solution:

¢ = (I+ AR, 3)
here Ry = io: MNTIKI,
=1
The series
matT) =7t =D MUK (t,7) (4)

j=1
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is called the Neumann series.

From the formulas (3) and (4), it is known that R, is the oper-
ator of linear integral by the kernel of 75. The kernel ry = r(¢,7, A)
is called a resolvent kernel. Obviously the resolvent kernel of the
kernel k(t, ) by the given A is unique.

Let f(z, ) be a given power series with function-valued coeffi-

cients,
(@, ) = co(z) + c1(z)A + ca(x)A? + - o+ cn(@)A" + -+, (5)

here c;(z) € La(a,b),i=0,1,2,---, f(z,)) is analytic as a function
of A at the origin A = 0.

From the theory of integral equations, it is known that the char-
acteristic value of the Fredholm integral equations of the second
kind which have continuous kernels or kernels in the small param-
eters can be obtained from the power series (5). Since the 1990s,
P. R. Graves-Morris introduced the generalized inverse function-
valued Padé approximation (GIPA) to accelerate the convergence
of the power series (5) and to estimate the characteristic value of
the integral equations.

Based on the works of Graves-Morris, in the doctoral disser-
tation, the writer defined a complex function-valued Padé approx-

imation (CGFPA) by means of a complex function-value inverse.
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Constructed the explicit determinant formulas of CGFPA for the
denominator of scalar polynomials and the numerator of function-
valued coefficient polynomials and three efficient recursive algo-
rithms. Verified the convergence and the uniqueness of the CGEPA.
Presented the algebraic properties of the CGFPA. Introduced the
application of the CGFPA to the approximation solution of integral
equations

The main conclusions:

(1) Generalized inverse real function-valued Padé approxima-
tion (GFPA) extended to the case of complex fllmction-values, then
a new definition of generalized inverse comf)lex function-valued
Padé approximation (CGFPA) is given.A

(2) An intact determinant formula of the CGFPA for the de-
nominator of scalar polynomials and the numerator of function-
valued coefficient polynomials is constructed. The specific formu-
las of the denominator gzx(A) and the numerator p,(z,A) of the
CGFPA of type [n/2k] are given. The Pfaffian reduced formula is -
given based on the determinant formula. Existence and uniqueness
of the CGFPA are proved by means of the determinant form.

(3) A new complex generalized inverse is defined normal for-




