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Progress on researches for physical laws
of natural convection heat transfer in past decade

Yang Shiming
School of Mechanical and Power Engineering, Shanghai Jiaotong University
Shanghai 200030, China

ABSTRACTS

A previous review on this subject appeared in 1994 . This is a second review covering the period of past decade.
Significant contributions on this subject appeared in this period. The adoption of Gr number as the transition criteria
and extension and improvement of experimental data lead to the creation of new formulations of the physical laws on
free convection heat transfer. In the literature, visualization of flow in boundary layer as well as additional experimental
results appeared in this period. In this review, the essential features of the new formulation will be presented and the

relevant progress in literature will be discussed .

KEY WORDS: Natural convection, Heat transfer, Physical laws

1. THE NEW PHYSICAL LAWS PROPOSED

Summarizing all recent achievements, a new formulation of the physical laws of natural convection heat transfer

was proposed by the author in 2001'") . The basic form of the correlation can be expressed by the following form.
Nu= C (GrPr)" ¢ (1)
where $denotes the physical property correction factor. C, n and the application range for different configurations can
be determined by experiments. For the most important cases of vertical plate and horizontal cylinder, recommended
values of C, n and recommended values of the range of application in terms of the Gr number are shown in Table 1.

The experimental basis of these recommendations are given by the author'?’ .

Table 1. Recommended C and n values in Eq. (1)

Geometry Gr range c n
Horizontal 1.43 x 10* ~5.76 x 10° 0.48 1/4
Cylinder 5.76 x 108 ~ 4.65 x 10° 0.0165 0.42

>4.65x 10° 0.11 1/3

Vertical plate 1.43 x 10 ~ 3 x 10° 0.59 1/4
3% 10° ~ 2 x 10" 0.0292 0.39

>2x 10 0.11 1/3

The features of the new formulation may be summarized as follows:

1. The Gr (Grashof number)is adopted as the transition criterion instead of the Ra (Rayleigh number) . The Gr
number plays the same role in the natural convection that the Re (Raynolds number ) number plays in forced convection
as can be derived from the momentum equation by similarity analysis theoretically .

2. A physical property correction factor ¢ is incorporated in the basic equation. For air, ¢ = 1 under usual con-

ditions. Any forms of $ may be used to cases where they have been proven to be effective. Tentatively a correction fac-
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tor ( Pre/ Pr,)% " has been recommended to be used in different conditions, but more work remains to be done in order
to remove its tentative status.

3. In between the laminar and turbulent regimes, a transitional regime was identified. The n value in the corre-
lating equation of the transition regime is higher than the n value of the correlating equation of the turbulent regime.
The recognition of the transition regime not only helps to locate the transition criteria more precisely but also to reflect
the physical status of the flow. The introduction of the transitional regime is a substantial improvement of our under-
standing of the physical phenomena.

4. For the turbulent regime, independent experimental results for different bodies, such as the vertical plate and
the horizontal cylinder, identical correlating equations are obtained. This result confirms that in the turbulent regime

correlation, the length scales cancel out and the heat transfer is independent on characteristic length .

2. DISCUSSION OF SELECTED TOPICS

(1) 1Is there any experimental support for the turbulent correlation for natural convection heat transfer of horizon-
tal cylinder by Churchill and Chu'®!? This question must be answered because this turbulent correlation is entirely dif-
ferent from the correlation of the new formulation.

Three sets of data appear on the correlation plot in the original paper of Churchill and Chu. The first set of data
is the data of Ackermann'*’. As has been pointed out by the author!>’, only part of these data belong to the natural
convection category, and the rest of the data with the effect of boiling should be excluded from the natural convection
category . As shown in Fig.1, the data in the natural convection category fall on the laminar natural convection correla-
tion of the new formulation nicely. The data on Churchill and Chu plot are the data with the effect of boiling. The sec-
ond set of data is the mass transfer data of Schutz'®). They convert the mass transfer coefficient directly to the heat
transfer coefficient in a way without experimental verification. The Schmidt numbers of Schutz experiment ranges from
1 714 ~ 2 073. The heat transfer data are air and water data with Pr number ranges of 0.7 ~ 6. It is doubtful that
without experimental verification any conversion of mass transfer coefficient to heat transfer coefficient with wildly dif-
ferent Sc and Pr numbers will preserve the experimental status. The third set of data is the data of Kutadeladze'®” .
These data are numerical results of a hypothetical fluid with a Prandtl number of 1.0. To sum up, in the turbulent cor-

relation of Churchill and Chu, no acceptable experimental data has been found.

o Ackermann (water)
o Author (water)
o Author (air)

—
S
(5]

Nu(Pry/Pr) """

10’ 10° 10’
Ra

Fig.1. Plot of data in the natural convection category .
(2) Are the recent experimental results of Clemes et al . correct? This is a good question. This question had

been raised by Morgan[s]at the end of conclusion section in his recent survey. Different from other steady state experi-
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mental methods, a transient experimental method has been employed by Clemes et al. The results they obtained are
somewhat lower than other steady state experimental results, but are closer to the numerical results. It must be pointed
out that in actual experiments, some local disturbances not predicted by numerical method have been revealed. As has
been shown by Eckert and Soehnghen[g]waves occur in the laminar boundary layer in the region well before the transi-
tion. The occurrence of sharp rise of local Nu number near the trailing edge of the heated cylinder has been reported
recently by Kitamura et al.[")The inability to count for these phenomena excludes the numerical method as the stan-
dard to compare with. The author incline to take the existing best experimental results as the standard to compare with
new experimental results. The consistent lower values of Clemes results in the range of 10* ~ 107 indicate the weakness
of his experimental method .

(3) Discussion on the minimum containment diameter ratio D,/ D is the next topic. In the experimental research
of natural convection for horizontal cylinder, a minimum containment diameter ratio should be observed in order to get
accurate results free from the influence of circulation of flow caused by the ceiling of the container. The effect of the
containment diameter for air has been studied by a number of workers. Wide differences exist for different workers.
The author is in favor to adopt the recommendation by Hessani et al. that D /D =10 for 2.6 % error ') . For water,
however, no recommendations were available at the time when the author worked on this subject. For the purpose to
obtain a recommendation for water, an experimental study had been taken with different D./D: 1.5 and 3.45. The
experimental set up and instrumentation are the same as in [12]. The results show that the data for D./D =3.45
agree very well with the laminar correlation line, while the data for D ./D = 1.5 are higher than the laminar correla-
tion. The data points for D,/ D are shown on Fig.2. On these grounds, D./ D =3.45 is tentatively recommended by
the author as the minimum containment diameter ratio for water. A recent work of this subject appeared in 2003. At-
mane et al. stated that preliminary experiments showed that above D./D =3.5 heat transfer around the cylinder and
the natural convection hydrodynamics were not affected by the water surface' ') . Their value is in substantial agree-
ment with the tentatively recommended value of the author. The tentatively recommended value had been used to exam-
ine the recent water data of Kitamura et al.'® ]Only a limited part of their water data meet the criterion D /D >3.45.
Specifically, these data are for D = 60 mm, 114 mm and 165 mm. However, equation (1)was not properly expressed
in [13]. The physical property correction factor is missing. A revised correct plot is shown in Fig.3. All acceptable

water data of Kitamura et al. are shown in this figure. As can be seen from Fig.3, these water data are in general

agreement with the equation of the author.

o 2 o 4
Zo0f =
= S
ik MCAW
S
=
101 L 1
9
10’ 10° " Ra 10

Fig.2. Effect of the containment diameter ratio.



o D,/D=15

NuPry/Pr,) """

10° 10° 10"
Ra

Fig.3. Recent water data in literature compared with Eq. (1).

3. EXTENSION OF COVERAGE OF THE NEW FORMULATION

Up to now, the coverage of the new formulation is rather limited. For the geometry of vertical plate and horizontal
cylinder, coverage of Pr number range also should be extended. Tremendous works remain to be done. Efforts in these
respects are cordially welcome. In the spirit of promoting these efforts, a revisit by the author on the work of
Touloukian et al.'™*’ will be reported below . Extensive experimental data for natural convection heat transfer on a verti-
cal cylinder to ethylene glycol and water were obtained. As stated in that paper Pr number of the ethylene glycol may
be taken as 40. If we take the alternative form of ¢ as suggested by Fand et al. (1514 = Pr%%  the laminar correlation
of Touloukian et al. may be expressed in the following form with an error less than 3% :

Nu,=0.726 ( GrPr)"*=0.59 ( GrPr)" ¢ PO (2)
The transition criterion of the laminar flow of the new formulation Gr =3 x 10° agrees also with their data. Significant
departure of the laminar line occurs above Ra of 1.2 x 10'°. This indicates the beginning of the transition region.
Touloukian et al. found that they were not able to correlate their data of ethylene glycol and water by a single line.
Separated correlation for different fluids form parallel correlating lines on the figures in their paper. The parallel corre-
lating lines for different fluids indicate that there is a missing parameter closely connected with the Pr number in the
correlation of different fluids. In the new formulation, this missing parameter is identified as the physical property cor-
rection factor. It is rewarding to see these early steps lead to the recognition of the role of this physical property correc-
tion factor in early publications.

From the above analysis, it is clear that although a correlation different from equation (1)was recommended by
Touloukian et al., their correlation can be transformed with the guide of the new formulation into the form almost iden-
tical to equation (1) . Their experimental data, therefore, may serve the role to support the new formulation. The task

of extension of experimental verification of the new formulation to high Pr number viscous fluids is partly realized.

4. CONCLUDING REMARKS

It is not uncommon that mistakes, false conceptions and unreliable experimental data retard the progress of our
understanding of the physical laws of a phenomenon. The introduction of the new formulation rejects the adoption of
Ra as the transition criteria and the unreliable experimental data, removes the stumbling blocks in the development of
the physical laws of natural convection heat transfer. This new formulation incorporates significant advances in our un-

derstanding of the physical laws of natural convection heat transfer and is expected to supersede the previous formula-
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tion in a not too distant future.
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