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BIAXIAT SHAKING TABLE STUDY OF A R/C FRAME
By M. G. OlivaI and R. W. CloughII

SUMMARY

Experimental earthquake testing of a large scale
reinforced concrete frame with fnelastic biaxial response
was undartaken on the University of Californiz shaking
table. Comparison of results with response measured
in a previous uniaxial test shaowed decreased capacity and
greater stiffness degradation 1n the rectangular colunms
under biaxial loading. Evaluation of local bending
mechanlsms demonstrated a conslderabie degree of biaxial
interaction when non-linear response cccurrad,

INTRODUCTION

In the event of a major earthquake, large lateral forces witl be in~
duced In the structural framework of a typilcal bullding. The dynamic
nature of the loading may produce biaxial inelastic bending in the colunmns
at one moment, and then reverse the moments as well as the contribution to
axlal loading due to overturning effecte, all within a2 fraction of a sec-
ond. Yet, most bulldings are desigmed only on the basis of static lateral
loads (specified by code}, applied independently to frames oriented parallel
with the two principal axes of the structure.

Can a design based on such simplistic concepts resist the acrual com-
bination of peak bending woments and axial loads developed in the members,
coneidering the entire history of deformation? While the structure ls in
the elagtic state, the two biaxial concurtent loadings induce no interaction
between the responses along their two axeg; hence the code assumption may
be valid for linear behavior. However, if inelastic response due to loading
along one axia changes the reslsting mechanism for motion along the other
axis, then load independence between the axes ceases and the code design
procedure would be highly questionable. The extent that such biaxial coup~
ling occurs in the earthquake response of real structures is preseatly a
matter of conjecture, and it was the purpose of this research to shed some
light on thia question.

Although the results of static blaxial tests on square columns with
constant axial loads have shown varying amounts of interaction (1} (2) (3),
they may not reflect the total influence that coupling could have when atl
load compoments vary randomly during inelastic earthquake respoase. Aktan,
et al (4), tested a square columm with lumped mass under earthquake motion
and reported unexpected permanent displacement drift due to biaxial inter-
action effects when the yield dimplacement was exceeded by a factor of two
or more. Jirsa (5) reviewed various other biaxial test programs and summar—
ized similar results and conclusions.

I. Research Assistaﬁt, University of California, Berkeley
II. Professor of Civil Engineering, Univeraity of California, Berkeley
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DTRAMIC RESPONSE BEHAVIOR
The blaxial nature of the response displacements is apparent in the

trace of the motion showm in Fig. 6 am viewed from above.

Indicated dis-

pPlacements were measured at the top of the First flcor column shown as a

darkened rectangle at the far left in

Fig. 4 and show motions relative to
the shaking table. The colum's
strong and weak axes coincide with
the longitvdinal and transverse axes
of the frame. The maximm displace-
ment loop toward the lower right in
Figure & is in a direction nearly
perpendicular to the axis of table
motion; that axis 1s 25 degrees
coynter~clockwlse from the horizon—
tal plot axis. -

If rhe firsr floor longitudinal
compone~,t of thiz bilaxial response
(measured on Test Structure RCF5) ia
compared with the {irst floor dis-

Fig. 6 bDisplacement Trace of
Top of Columm

placements measured in the previous equivalent uniaxial teats (Struetire

RCF2) the two records are remarkably similar.

The only major difference

between the longitudinal displacement histories of the two frames ix the

incréased degradation of stiffness resulting from biaxial damage.

This

degradation ia evidenced by the increased firat mode longitudinsl vibra~
tion period, shown marked on the response spectrum for the test motion

(Fig. 7).

The uniaxial test frame (RCF2) showed a smaller change of period

(0.32 to 0.49 sec.) in the corresponding test, thus demonatrating a lesser

degree of damage.

-

ir neturs! plrbd!_’.

Fig. 7 Pseudo-acceleration Response Spacttvm of Table
Motion and Variation of Medel Period

Most of the inelastic deformation and damage to the structure occurred
at the extremities of the lower columns, with spalling and concrets erushing

initiated at the corners (Figure 3)}.

Greater visible coluan damage was

apparent in the present bilaxial frame than was seen in the earlier unfaxial






The bending respomse 1s separated into components along the major {north-
south) axis and winor {(east-west) axis., Posirive moments correspond with
compression on the south and west column faces respectively. Letters
indicate corresponding points in time on each of the plots. The interval
plotted extends from 5.68 seconds to 6.38 seconds in the earthguake record,
but similar behavior, indicating signifiecant strong axis influence on weak
axls mements is evident in the. entire résponse history after the first large
displacement . excursion at 3.14 seconds.

The nature of the response interaction becomes underatandable 1f the
moment—curvature results of Figs. 10a and b are consaidered in conjunction
with the axial lead varfationm, .with the cracking condition of the confimed
and cover concrete, and with the reinforeing bar strain history and instant-
aneous stiffness. Prior to the start of the loterval at 5.68 seconds, the
reinforcing bars already have permanent residusl strains ranging from 0.3%
to 1.0% and have been straired to a maximm of 1.5%, The céncrete has
developed open residual cracks through the entire concrete cross section
(in the abeence of eignificant compression forces.) Loss of bond between
concrete and steel was detected over at least a 3 in. length on one of
the bars and the steel atrains listed above justify assumption of bond
loss over segments of all of the bars at the column-to-footing Joint.
Calculated coucrete strains indicate that crushing of some of the concrete
cover has occurred at the two corners on the morth column face.

In the interval shown between pointe 'b' apnd 'c¢', for inatance, the
weak axis east-west bending plot hag a platesu of low apparent etiffness
while the north-south {strong} component is unloading from & southerly
- peak at 'b'. The north-south compoment bending moment changes from posi-
tive 145 in.-k (16.4kN-m) to a value of zerb, while the east-west component
increases slightly from pogitive 11 in.-k (1.2kN-w) to 21 in.-k{2.4kN-m).
During the short 'b-¢' period (0.12 mec.) the axial load increases from
3.0 kips (13kN} to 21.8 kips (97KN)} as a result of changing overturning

moments.

At point ’b', under lpw axial load and high residual bar strains,
.the entire column was cracked open and the bar in the ssuth-west corner
wasg ylelding in compression, while the bar in the southeast corner was
near compressive ylelding. By the time of poilnt 'c', the opem crack along
the north face of the column resulting from the south moment at 'b' had
--closed at 1ts west corner under the fncreased axial load and relatively
- censtant west moment. The relnforcing bar at the northwest corner was
ylelding in compreseion, the southweet bar was under elastic compression
and the southeast bar changed from rear compressive yield to tension. The
large change of strain in the aoutheast bar and the yielding northwest bar
caused a rotation in the column about am axls running roughly through the
northeast and southweet corners.

Thus an apparent east-west component of rotation occurred while
the column was under constant moment, and produced the flat segment in the
east~west moment curvature dlagram.” Similar chenges in apparent stiff-
ness have been detected when the conerete cover at & corner reached 1t's
crushing strain, effectively reducing the section =ize along both axes.



Unexpected deformations also occurred when degreasing axial loads affacted
the vyield strain in specified bars, while other bars remained elastic
under constant moment.

CONCLUSTION

Studies of the test data have verified that the resisting capacities
of the structure are reduced under multiaxial loading as expected; also a
marked degree of response Interaction has been demonstrated when non-linear
motion involving changes in the section stiffness occurred. In the test
atructure which has rectangular colunns with distinct strong and weak axes,
the biaxial coupling occurred predominantly in the form of a significant
strong axis influence on weak axis response.

Correlation studies are now being undertaken to compare the experi-
mental test results with predictions from various types of computer
analysis. Methods considered include combining 2-I frame analyses along
separate axes and using 3-D degrading stiffness modeling of the entire
atructure. The vast amount of test data that has been obtained during
this investigation warrants extensive study, and the final report on the
project will not be completed for several months.
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A4 RATVE MODEL FOR ROWLINEAR RESPONSE OF
RELNFORCED CONCRETE. BUILDINGS

By
I1
Hehdl Saiidil and Meta Sozen
SUMMARY

4 aimple and economical model is introduvied fot rhe culoulation of the
nonlivear displacement-response histories of aylti-etory structures sub-
Jectad to strong earthquakes. A structuze is idemlized an o mARS counnected
to a rigld bar that in turn is connected to the gtound by & hinge and a
rotational spring. The calculited responses are. comparsd with messursd
experinantal results from dynamic testing of eight small-scals ten-atory
model prructures. Satlafacrory corraletion betwean the egrnalytical and
experimental results haa bean obhesrved,

INTRODUCTION

Structures designed accordiog to current engineering practiee 1in the
U.3. are expected to develop nomlinesr deformardons when subjected to atrong
ground motions. Although nonlinear analyeis of structures iz a complicated
and lengthy process, with the halp of sophleticated digital computers
succersful anzlytical models have been developed for this purpose [7, 9].
Becavse of the invoived data preparation procedures amg, at times, due tn
lack of confidence in complicated programs {which catnac be chacked easily)
these models have not been urflized by the engineer in practice who needs a
stwple modul which can be easlly nsed for several poasible altarnative
designs.

This paper inrroduces a simple nonlinear model (called the §-Model) to
caleulate the selsmic displacement-response hilstories of nulti-stary rein-
foreed roncrate stTuctuies.  Measured vYesponss histories of cight amall-
scale ten-story strucfures ace used to evaluate the tesults of the model,

DESCRIFTION OF THE MODEL

The idea of representing a mutli-degres-of-freedom system by 2 "single-
degree” system with some gensralized mags, stiffness, and damping has been
used for elastic atructural aystems. The extension af such idealization
for inelastic problems has been viewed with some caution because of the
changing stiffress properties and, therefgre, dvnemic properties of inelas—
tic syetems. *

Curvent engincering practiee ancoUrages the desiyner to proportien
the columns of 2 structure such chat they experience only Idmited yieldiag
during the design earthquake. Experimental results from testing of
reloforced concrete seructures designed according to this criterion indi-
cate that the deflected shape will tend ra remain essentially unchanged as
nenlinear deformations are develeped 11,3,4,5]. Furthermore, displecement

TEsponses have been shown to be domingted by the first mode. Therefore,
a "wlei-story ntructure with the above properties can be reduced to g
sltrgle~dexree syscem with some foutee of hystereric energy digzipation.

Equivajent Mans. The {-Mogdel ia shovm in Fig. 1. The goveming dynamic
differential wquation can be deseribed es [2].

w HoE+ &k = —azhty (1}
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where
H = tota} maas of the MDOF system

‘ = ptiffness of the MDOF system (overall ptiffness defined
in terms of a particolar lareral foree smd a particular
horizental displacemant)

x = Jlateral displecament of the msss of the SDOF pscillator

with respect to ite bage

1
a, = (rflﬂrlﬁr) / H,

o = (rilnrﬁr) I

r = nuteral identifying level in MDOF syatem

3 = total nmber of levels in MDOP ayatem

#_ = mpaas at leval r

%_ = ratlo of assumed displacement at level r to that at
4 level j.

¥ = accelecation of the bape,

Te aimplify the equatlon, both sides*are divided by tys and & dsmp-
ing force iz ad K, X+ CE o+ Kx = _th -
in which Me - (unhx) Ht. equivalent mags; and © » viscous damping coef-
ficent,

Stiffness Properties. To define the stiffneas characteristics, aesukptions
dre made aboot the primsty force—deformarion relationship and ariffness
veriationg for wnloading and load-reveraal ateges. The primary curve is
directly relacted to the aciffness of the multi-atory structure and 1s obe
tained from a sracic enalysis of the structure for a eet of monotonically
Increasing iateral forces applied at floor levels {Flg. 1). The lateral
force at a glven level is proporticnal te the msss and height at thar level.
The primary curve isz then approximgted by a4 bilinear curve. One posgible
set of rules for such approximarion 1a given in Reference 11,

The sasumptions about stiffness variations upon mloading and sub-
sequent loadings are included in & aimple hysteresis model described by
tour rules. Appendix A in Referenmce 11 describes the details of the hysater—
egia model.

Corresponding to each point of the Primary curve there fa s lateral
deflected shape for the mylti-atory gtructure, The shape corregponding te
the beak point of the idealized binary curve 1g zesumed to represent tha
vibration shape of the atructure. The height of the mass in the O-Model is
sssumed to be

]

"

=1"r ’:r hr

‘j R

rz'l i.{l: wt

in which hr = the helght of level r from bage,

Solutien Technigue, With an arbirtery demping factor of 2%. Equation 1 wasz
integrated using Wewmark's B-tethod [6]. The value of B was taken as D.25,

MODEL STRUCTURES

Eight mmall-acale ten-stoTy reinforced concrete model 8EructuTes were
analyzed using the {-Model. Four of thase (MP1, MF2, B1, ang H1} remgiated
of aniy cwo frames, Each of the other four (FW1, FWiZ, FW3, and PW4) com-
prised two frames as well aa a central shear wall., The struetures were
subjected o simulated earchquakes at the Univareity of Illincls at Urbana.

The input motion was applied to the structures in horizontal direction
and parallel to the Btreng axia of each building. Structures MFI, MFZ, Hl,
H2, PW1, and FW4 wers subjected to a afmulated norch-gouth component of
EL Centruo, 1940, The laput motion for the other two was modeled afrer g
north-eaat compenent of Taft 1952. All but e of the structures (H?) were
Bubjected to three motiona with increasing Intensity from one run ro the
other. The firet rum for each case corresponded to the "deafgn aarthquake"

&



