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1. Asymptopic Behavior of Spheroidal Eigenfrequencies
of a Multi-Layered Spherical Earth.
— Modes of Very High Phase Velocity —

By Toshikazu OpAka,

. Earthquake Research Institute.

{Received Feb. 29, 1980)

Abstract

Derivation of a frequency equation is made in terms of the
matrix formulation for spheroidal oscillations of a multi-layered
spherical Earth. Then, it is shown that the equation splits at very
high frequency into three independent equations corresponding to
three body-wave types, PKIKP, (5¢8), and J respectiveiy.

The result is used to obtain asymptotic frequency equations in
explicit forms for simple Earth models consisting of a homogeneous
liquid core and a one- to three-layered mantle. Comparison of those
formulas leads to the conclusion that the equation for PKP-type and
that for (SeS),-type are similar in form to each other when the
number of internal discontinuities effective to respective body waves
are the same. The fundamental difference in their forms is that the
former equation depends on the ev and odd of the Legendre
order while the latter one does not. It is proved through numerical
computations that the solutions of the above equations to the first
order approximation are useful for explaining asymptotic patterns of
distribution of eigenfrequencies.

Further computations are made for two Earth models with re-
alistic mantle structure, one with two distinet discomtinuities in the
upper mantle and the other with a continuously varying structure.
Then, it is proved that in general there exists a remarkable differ-
ence between the two patterns of distribution of their eigenfre-
quencies. However the difference falls off at low frequencies because
the whole upper-mantles, where elastic parameters change sharply
with depth, act aa the same scale of discontinuities on long-period free
oscillations, Their patterns of oscillatory features are explainable in
terms of an additive effect of the individual ‘“‘solotone effect” associ-
ated with each discontinuity in the Earth.

1. Introduction

Since 1974, many investigations have been made on asymptotic
behavior of eigenfrequencies of free oscillations of the Earth (e.g.,
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AnDERSSEN and CLEARY, 1974; Lapwoob, 1975; WANG et al., 1977; SaToO
and LAPwoOD, 1977 a, b). These researches are mainly concerned with
torsional oscillations and few papers refer to spheroidal oscillations
(e.g., ANDERSSEN et al., 1975; GILBERT, 1975). There, especially, seems
to be no quantitative discussion concerning spheroidal modes on the
effect of discontinuities in the Earth on the distribution of the eigen-
frequencies.

In this paper, we first derive a frequency equation for the sphe-
roidal oscillations of a multi-layered spherical Earth in terms of the
matrix method. Then, its asymptotic formula, valid at high frequenecy
limit, is derived. Asymptotic frequency equations for simple Earth
models are obtained in explicit forms and their sclutions to the zero
order and first order approximations are derived. Finslly, numerical
computation is made for two kinds of models, one with a very simple
structure and the other with a rather realistic maatle strueture, in
order to confirm the validity of the above mentioned approximate solu-
tions and to examine by experimenis the effect of the discontinuities
on the asymptotic patterns of the distribution of the eigenfrequencies.

The matrix method is equivalent to the so~salled Thomson-Haskell
method applied primarily to wave propagsation in a plane stratified
medium. Its principle is now familiar to us and we ean find some
applications to spherically stratified media (GILBERT and MacDoNALD,
1960; BEN-MENAHEM, 1964b; PHINNEY and ALEXANDER, 1966; BHATTA-
CHARYA, 1976). However, no expression of a spheroidal freguency
equation for an Earth with a solid inner core seems to be directly
available. Here, we will develop independent formulation to obtain
the formal frequeney equation in a form convenient for our present
purpose. The effeet of gravity is ignored since it is expected to be
small for higher modes.

2. Frequency Equation for a Multi-Layered Earth

We assume that an Earth is formed of the crust/mantle, the liquid
outer core and the solid inner core, each medium consisting of the
stack of uniform spherical layers in welded contact. A realistic Earth
model is obtained by increasing the number of uniform layers. The
numbering of the layers and boundaries are shown in Fig. 1, where
the numbers 1 through K refer to the inner core, X+1 through L to
the outer core and L+1 through M to the mantle/crust respectively.

We denote radial factors of displacements and stresses for the
spheroidal modes in a vector form as

vy =Udr), rVdr), Sdr), r*Tr)) (ro<r<r) @1
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Fig. 1. Muiti-layered Earth model consisting of the sgolid inner core (K
layers), liquid outer core (L— K layers) and mantlelcrust (M~ layers).

where U, and V, are the radisl and tangential displacement compo-
nents in the i-th layer, S, and 7, the radial and tangential stress
components acting on the plane normal to the radial direction. + means
the radial distance and #, that of the i-th interface. By the super-
seript T (transpose) we define g,(r) as & column vector, which ig, in
a homogeneous and isotropic medium, given by

pdry=E{rie, (rosrsr), (2.2)
where .
Iﬂ‘.(?')'*—-‘(&;;,} (4, k= 1, 2) 3’ 4) ]

¢,=(4, B, C, D) . )

E, iz the 4> 4 matrix and its elements e},(r) are, referring to the solu-
tions of equations of motion obtained by SEzawa (1932), given by

(e3e) =
horguher) Ng (k) hanohr) Ning (k)
Jalher) krjuko)+ k) n(h.r) krnukr)+n,kr)
fg(dy her) 1 NG, k) sg(n, heo) # N f(n, k)
(5 her) tehiga k) #f (e, her) Hhin, k)

(2.4)

where 7,(s) and n,(lr) are the spherical Bessel and the spherieal
Neumann function of the order = respectively, h, and k, the wave
numbers of P and S waves in the i-th layer, s, the rigidity, and
Nl=ﬂ(n +1), z:(C‘r)zdz.{C‘r)jd(C‘r) (Ci=h, or k),
iz, L) =2002nCor) —22,80)
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%y L7y = — 402 St = (R P — 2Nz, (L)
bz, kiv) = flz,, k) +0(%,, ko). (2.5
The elements of the vector ¢, are unknown constants in the i-th layer,

which are to be determined from boundary conditions and source
conditions.

From the physical requirement that displacement components have
to be finite at the center of the Earth, we put, for the innermost
layer, all the terms that the spherical Neumann function is concerned
with to be zero. Hence, we have

en=eu=0 (5=1,234), 2.6)
C=D,=0.
In the liquid medium, the rigidity is zero and a shear stress vanishes.
Hence we put, for i=K+1, K42, ---, L,

B=D=0,

e=eu,=0 (j=1,23,4), eu=0 (k=1,3), 2.7)

ey = = MR Vi) s €= —AfhaVruhe), (e ZSrSe).

e, and e}, are rewritten by use of )\, (Lamé elastic parameter). Here
we introduce the following notations

; €1 efy el € i (€5 s\
Bt m=(. o EBe=( )

i < 4 i i 7
€1 €iz €53 Bkt [ L SO

(2.8)

; . (4
Ej(r)= (8:'1; 9;2: 8},, 0}‘) ' €= rl\C:) *

Then, the boundary conditions that displacement and stress components
are continzous at each interface lead to .

Efr)e,=E.(r)e., (i=1,2 .., K-1,L+1,L+2, .-, M—-1),

E(r)e=E.(r)es, (i=K+1, K+2, -, L=1),

ERireies=Exs(rx)exr, Ei(rgeg=0,

Efr e, =EP (rdeis » Elnirde ,=0. (2.9)
With the aid of the first relation of Eq. (2.9), it is possible to connect
the vector ¢, with ¢, and the vector ¢, with ¢,, Then, putting
stress components on the free surface (»r=r,=a) to be zero, we get

#yla)=(aU(a), aVy(a), 0, 0 =Fye,s, , (2.10)
where

Fy=DyDy,----++ DB (ro) (2.11)
and
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D =E(r )ENr, ). (2.12)
E;* is the inverse matrix of E,. The other relation is
cx=Fc, , (2.13)
where
Fo=Eg'(ry_ ) Dg_ Dy v D.E\(v,) . (2.14)
In & similar manner, from the second relation of Eq. (2.9), we get
er=Fyexn (2.15)
where
Fi=Eir,)D,oD, - Doy (r5s) (2.16)

A matrix with 2 hat means a 2x2 matrix. From the latter four
equations of Eq. (2.9) and Eqs. (2.10), (2.13), (2.15), we obtain

EiroFse =0, E¥roFse,—Een(rdéc. =0,
EL(?'LJFLER"-'I_Eis-t!(‘r!.)CLJ-lzo y E;+1(".LJCL| =0,
Fie ., =0, (2.17)

where 0 denotes the zero vector in two dimensions, and F3 is the
2x 4 matrix consisting of the third and fourth rows of the matrix F,,
defined in & similar manner as E* in Eq. (2.8). These equations can
be arranged in one equational form as

Ae=0 (2.1B)
where

A=(ﬂ,:z) (4, kzl! 2, -8,

2.19
¢=(Ay By, Ags, Crvy Ay, Buos, Covsy Do) (2.19)

and ( means the zero vector in eight dimensions. The elements of the
matrix 4 are given by

[ S P -
(@, @i, 0, O=Bir)Fi , [ " )=~ Bty
I.'an a, 0 0)

L] all
F, » F '
Ly @y, 00, W) Fr (.'Iu a'u_) L(”'L) L

L T S 9 a..'\ :
{ —ER(r) ) (Qw, G, e, a)=E} (1)
My gy ey T
a.n,a or
f=Fi. (2.20)

a’ﬂa Qo G iy
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Other elements are all identically zero.

Hence, the frequency equation of the spheroidal oscillations of the
spherically symmetric, multi-layered (solid-liquid-solid) Earth is formally
given as

det 4=0. (2.21)

Among 8x8 elements of the matrix A, thirty components are identi-
eally zero and thus it is easy to reduce its dimension to a lower one,
say, 4x4.

In obtaining the eigenfunctions, Uir), V(r), we have to get values
of the constants e; for all layers, This can be done as follows, If
we standardize, in a conventional way, the radial component of sur-
face displacements to be unity, that is, Uyla)=1, we get another
equation, from Eq. (2.10),

Fye, . =a, (2.22)

where Fi is the row vector consisting of the first row of the matrix
F,. Then we can solve the equations, (2.18) and (2.22), for ¢, &x., and
¢,+, and subsequently Eq. (2.9) for all ¢, Hence, from Eqg. (2.2), we
can obtain the eigenfunction g(v) for the whole space in the Earth.

A similar treatment is possible for the problem of excitation of
free oscillations of the Earth due to an external force (say, a double
couple point source) in it. Then, we introduce an equivalent source
funetion (UsaMi et al., 1970), which is defined as a discontinuity of
ya(r) across-the source surface (r=r,) situated in the m-th layer. This
imposes another boundary condition on w,(r) besides Eq. (2.9). Hence,
the problem has to be solved so that y(r) may have a jump by an
amount 3y, (equivalent source function) at r=7, in the m-th layer.
Then, it is found that Eq. (2.10) is modified to .

(aU.u(a), aVula), 0, 0 =Fyc,y, + FE(r,)0y. , (2.23)
where
F=D,Dy - Dy E(r,) . (2.24)
If we put the source term as .
FEJ(r)oy,=0"=(f3, f3, fi, £i7, (2.25)
we get, in place of the last relation of Eq. (2.17),
Féern=—(f1, 17, (2.26)

. and thus, in place of Eq. (2.18),
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Ac=(0,0,0,0,0,0, — 5, —f". (2.27)

By solving these simultaneous linear equations we can get the constants
c, €x+ and c,.,. Hence, the formal solution for surface displacements
is readily obtained from Eq. (2.23).

When an Earth consists of solid (crust/mantle) and liquid (core)
media, we have only to remove the inner solid layers from the pre-
ceding model. Then, the (K +1)st layer is shifted to the lowest layer
which includes the center of the Earth, and we put ef*'=eft'=0,
Cyx+,=0 in the same manner as Eq. (2.6). Slight modification of the
preceding formulation leads, instead of Eq. (2.18), to

By By By B By Ags, (0

gy gy Qg Cyr Oy A 0
0 Qo 2o a7 Tus B, |=|0 (2.28)
0 Gy Gy Brr Gy CL 0
0 oy Gy Gy By Dy, 0

where the elements a;, are the same as those defined in Eq. (2.20).
The frequeney equation is given by the determinant of the sbove
matrix 4, that is,

detA=0, (2.29)
where
- o [i=4,5, -, 8}

When an Earth is constructed by only solid layers, we remove
the liquid and inner solid layers from the first model. Then, the
(L +1)st layer is shifted to the lowest one and we have to put ei''=
el'=0 (§=1,2,8,4), C,s,=D,:,=0. In this case, the last equation of
{2.17) can be rewritten as

: "fs‘:'f;) Am)z(o\l
VA f&/\Bun) 10/

where fX is an element of the matrix F,. Hence, the frequency equa-
tion is simply given as

(2.31)

afe —fafi=0. (2.32)

3. Asymptotic Frequency Equation

When an argument of the spherical Bessel {or Neumann) function
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is very large compared with its order, j.(z) and =n,z) are asymptoti-
cally approximated as (Watson 1952, p. 199)

Jd2y=(Yz)sin(z—nm/2) , n,(z)=—(1/z)cos(z—nm/2) .

Hence, if we assume hr®»n (r=r, i=1, 2, --+, M), we have the follow-
ing ‘approximations for the functions in E(r)
Jul@)=(lz)sin Z , n.(z)=—(1l/z)cos Z ,
Juz)=(1fz)ec0s Z , n.(zl=(1l/z}8inZ, 3.1)
flja, 8)=2co8 Z, g{j., 2)=—(zfz)8inZ, h(j, s)=—zs8inZ,,
fin,, z)=2sinZ, gn,, z)=(zi/z)cos Z, hin, z,)=z,c08Z,,
where
z=hy or kr, zZi=hkr, Z=z—unf2, Z,=z,—nx/2.

Substituting the above formulas inte Egq. (2.4), and keeping the most
predominant terms, we get

cos H! 0 sin H} 0
E,(r)~ 0 cos K7 0 gin K} (3.2)
—~wparsiaHY 0 wo,ar cos H} 0
0 —wpBrsin K} 0 @p,3.r cos K}
where
Hi=hy—nn/2, K}l=kr—nr/2, (8.8)

and p,, a, and 3, mean the density, P and § wave velocities in the
i-th layer respectively, and w the angular frequency. During reduc-
tion, the relations x(kr)/(h7)=wpar, plr=wpSr are employed.
Thus, the matrix E,(r) is reduced to a very simple form, and its
inverse matrix is immediately obtained as

(cas HE 0 —{1l/wp.a.r)sin H} 0
Em= 0 cos X! 0 —(lfwp.8,r)sin K; (3.4)
Lsm Hf 0  (lopar)cos H 0
0 sinkK! 0 (Lwp.3r)eos K}
Hence, we have, from Eq. (2.12),
cos hd, 0 {(Ywpuor, )sin bd, 0
D;:( 0 cos k.d, 0 (Ywp,Br-)sin kd,
—wp . 8in hd, 0 (rir.—)cos hd, 0
L 0 —wp, 3. sin kd, 0 (rir.,)eos kd,

(3.5)
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where d,=7»,—7,-, (thickness of the i-th layer).
1f we write & term associated with P wave as “P” and that with
S wave as “S”, we find that E, E;* and D, are all denoted formally as
PO PO
0SS 0Ss
POPO
0505
Then, it is readily proved that F, and F; also retain a similar matrix
form as (3.6). All the elements of F, are naturally identified as “P”.

In the result, each element a; in Eq. {2.20) is expressed in its asymp-
totic form as

(3.6)

@, =0, a,,=8F, a, = P, a,, =0, a,, =~ P}, a,,:b, gy == PP, @ = PF,

;= PE ay=Pf ag=P}, a,= P, ay=P}, a,=P} ,

Q= PY, 0,0, a, =P, ap=0, dy= P, au,=0, ay= P, a,=0,

Gy =0, @y =8, 2e=0, 2x=8, a,=P", a;,=0, a,=P", a,~0,

=0, ap=S", 2,=0, az=3)", (3.7)
where the symbols “P” and “S” mean that an element is connected
with P and S waves respectively and the superscripts K, L and M
discriminate elements which are associated with the inner core, outer
core and crust/mantlz respectively. The numericsl subseripts are

merely put in order of appearance.
Now, Eq. (2.21) iz formally reduced to

/0 SF0 0

PF O Pl P 0
PX 0 P+ PF

0 OP"PFPY0 PO

det 0 0P-PrPX0 PXO =0 . (3.8)
0 S*0 S8X
0 Pr0o PXYO
¢ S¥0 8¥

Further reduction yields three independent equations,
PFE PFPFO O
PEPEPFO O
0, det| 0 P* P P* P¥|=0. (3.9)
0 P P: P PN
00 0 P*Pr

" (8 Sf\l
Sr=0, det'.\s; s/ =
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The first, second and third equations give eigenfrequencies for shear
oscillations of the inner solid sphere (inner core), shear oscillations of
the outer solid shell (crust/mantle} and compressional oscillations of
the whole Earth respectively. These three modes are called J, (ScS),
and PKIKP type respectively, corresponding to three different body-
wave types (ANDERRSEN et al., 1975; GILBERT, 1975). This decoupling
of the rays is possible only for their radial propagation in the Earth
because no conversion of wave types occurs at a boundary in the Earth
for their normal incidence on it and they behave independently there.
In view of the mode-ray duality (BEN-MENAHEM, 1964a), it is found
that the basic assumption in this section that h»®»n (i.e., the phase
velocity is very high) just fits this ray-geometrical condition.

For the Earth consisting of solid (crust/mantle} and liquid (core)
media, Eq. (2.29) is available instead of (2.21). Hence, the asymptotic
frequency equation (3.9) reduces to

— P} PX PF
det| . ;)=0, det| P P¥ PX|=0. (3.10)
WSy SY 0 P¥ ps

GILBERT (1975) has proved the decoupling of a frequeney equation
at high frequency directly from decomposition of basic differential
equations for elastic material. His paper does not, however, include
investigation on the effect of discontinuities in the medium on eigenfre-
quencies. In the following part, we derive the asymptotic frequency
equations in explieit forms for simple Earth models, consisting of a
uniform liquid core and a small number of solid spherical layers over-
lying it. Hereafter, we will call the (Se¢S), type modes simply as
“ScS-type” and PKIKP type as “PKP-type” (due to nonexistence of
inner core phase), corresponding to the two equations of Eq. (3.10)
respectively.

Since we assume the uniform liquid core, tie L-th layer in Fig. 1
is reduced to the first layer. Hence, we put L=1 in the previous
equations. Then, the layer 1 and r, indicate the uniform liquid core
and its radius. Each element in Eq. (3.10) is obtained from Eqs.
(2.15), (2.16), (2.20), (3.2) and (3.7), so we haﬁe

a,=¢\(r)=¢os H! = P}' ,'
ay=eh(r )= —wp,ar sin H =P},
ay= —eh(r)=—cos H}, =P,

= —eh(r)=—gin H,=PF,

@y = — e (r )= wpur, sin H: =P,
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Gy = —ey(r,)= —wp,a.r, cos H =P,
Q4= €4(7,) = —@Wp,Byr, 8in K} =8y,
ay=el(r,) =wp,B,r, cos K =8Y, (3.11) .
where
Hl,=hy;—nx/2, Kl=kr;—umr/2 (j=ior i-1) (3.12)

These elements are common to any model with a uniform liquid core.
The other elements, P¥, Py, S¥, S¥, are obtained from an asymptotic
formula for F}, which depends on the number of layers overlying the
core. For brevity's sake, we introduce the notations

Rf‘“’(P;H“ﬂ—u — PP+ pixy)
Ry =_‘(Pt+n@.+-._|91ﬁ‘).l"(.as+l,85 080

which are the reflection coefficients for normal incidence of P and §
waves on the i-th interface respectively.

(i) Two-Layered Model (a homogeneous mantle and liquid core)
From Eqs. (2.11), (2.20), (3.2} and (3.7), we get

(3.13)

ay=éi(r)= —wpamr sin H, =P,
An=—g%{r,) =@par, cos H,=PY ,
Ay =eh(r,)= — w8y, sin K2,==8¥ ,
Qg = e4,(7,) = 00, By7, cos KL =8

(3.14)

Inserting Egs. (3.11) and (3.14) into (3.10) and arranging it, we get
sin kd, =0,
sin (hd, + kv, —nx/2)+ BT sin(h,d, ~— b7, +nmw/2)=0 . {3.15)
The first equation is the asymptotic frequency equatien for the SeS-

type modes and the second one is for the PKP-type modes.

(ii} Three-Layered Model (s two-layered mantle and a liquid core}
From Eq. (2.11), we have

Fy=DE(r). (3.16)
Then, with the aid of Eqs. (2.20), (3.2), (3.5) and (3.7), we obtain
7y = — WO,AT, 8iN kyd, cos HE+ (ryfr,)(P¥), cos hyd, =P ,
By =2 — WP, 8N hyd, sin HE + (ryfr)(PX), cos hd, =P ,
== — Py 3,7y SN Ky, 008 K7, + (r/7y)(SY), cos kyd,=8¥ , °
@y = — W3,y 8in kyd, 8in K7, + (ry/r,)(8Y), cos kd, =S,

(3.17)

where (P"),, (P, (S¥): and (S¥), are the coefficients defined for the
preceding case and are identical with P¥, P¥, S¥ and 8¥ in Eq. (3.14)
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respectively.
Substitution of Eqs. (3.11) and (3.17) into (3.10) leads to, cor-
responding to the SeS-type and PKP-type respectively,

sin (k,d,+ k.d,) + B sinlkd,— k,d.) =0,
sin(hyd, + hod. + by, — nmi2)+ R sin (hyd; 4 hod. —h oy, + na/2)
- R sin (hyd,—h.d.— k2, +nn/2)+ R R] sin (hd,— hd. + b2, —-n1/2)
=0, (3.18)
where BRI and RY are the reflection coefficients defined by Eq. (3.13),
and d, is the thickness of the i-th layer.
(iii) Four-Layered Model (a three-layered mantle and a liquid core)
From Eq. (2.11), we have
F.u_—-DaDsEz(r!) ' i319}
which yields, through Eqs. (2.20), (3.2}, (3.5) and (3.7),

= —wpan, sin hd,fcos hd, cos Hi,—(p.a,/p0)8in hod, sin H.)
+{rJr (P cos hd,= P, .

a:= — @A r, 8in hdfeos hd, sin H}, + (p.a./0.0.)s1in hod; cos Hi )
= (7P cos hd, =Py,

4., = — w87, sin kd (cos kd, cos K. —(0,3./0,3,)8in k., sin K.}
+{rfra Sy ) cos kbd, =8,

1= — @R, 8in kdfcos kd, sin Ki +(0,8./0,3,)8in kd, cos K.}

{7 )8) cos kd, =S, (3.20)

where {(FP)"),, (P, (S¥), and (S}, stand for the coeflicients P, P.’,
S) and 8¢ in Eq. (3.17).

After substitution of Egs. (3.11) and (3.20) into (3.10) and some
algebraic manipulations, we get

8in (7, + 7,4+ 7.) + Ry sin (4, + 9, — 7 + BRI sin (n, —n,—n.)
+R{RS sin (g, — 7, +7,) =0

sin{(f,+5,+&+H ) +Rsin (g + 5+ &L H)+ R siniz, ¢ 5,2 - H
+ Ry sin (&, — 5 —5— H!)+ RUR] sin (;l--.- -+ H
+RIR sin (5, — 5+ &+ H+RIR sin (5,— 5, -5~ H)
+RIRTR{ sin (3,— 5L+ &—HLi=0, 13,21

where #; and &, are short for kd, and hd, respectively and H, for
h#, —nx/2. The first and second equations correspond to the SeS-type
and PKP-type modes respectively.



