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High Nitrogen Austenitic Stainless Steels for Sustainable Development

Markus O. Speidel
(Swiss Academy of Material Science , Birmenstorf, Switzerland
Central Iron and Steel Research Institute , Beijing China)

Abstract: Nitrogen can replace nickel in austenitic stainless steels, thus resulting in products which
are : more environmentally benign through conserving resources; more economic due to the low cost of ni-
trogen ; much stronger in the extreme up to 3600MPa; much more ductile than other steels of the same
strength; more corrosion resistant for one weight percent nitrogen equals twenty percent of chromium in
terms of localized corrosion resistance ; more stress corrosion cracking resistant; biocompatible not causing
nickel allergy. These advantages, taken together, will make high nitrogen austenitic stainless steel prime
candidate material for the future sustained development and for products which last longer and can do
more with less. The disadvantages of the steel include limited weldability;and the specific manufacturing
process . High nitrogen austenitic stainless steel already exists as niche products and has been made on an
industrial scale in various product forms. A wide application is expected with the mastering of the process-
ing technologies for large — scale production. Potential products are outlined from the point of view of a
sustained development where conserving of resources, low cost, high strength, high toughness and high cor-
rosion resistance of steels are required. For the startup of this sustainable development,existing production
equipment can be used.

Key Words: High nitrogen steel; austenitic stainless steel ; strength and ductility ; strength-to-density

ratio ; sustainable development

1 Introducing nitrogen into solid solution

One of the most pronounced and most useful ef-
fects of nitrogen in iron solid solutions is the stabiliza-
tion of the face centered cubic crystal lattice, as seen in
Figure 1 for steels with 23 weight percent chromium.
This effect is fully made use of in austenitic high nitro-
gen steels, but quenching is always necessary 1o retain
the austenitic phase at ambient temperature . Therefore ,
the introduction of enough nitrogen into the steel during
processing and its retention in solid solution during heat
treatment require specific know-how for the steelmaker.
This know-how is presently being established in China
by pilot production.

2 Strength and ductility

Nitrogen in solid solution affects at least four
strengthening mechanisms positively: solid solution
hardening, grain refinement hardening, work hardening
[1-5]

and strain aging''>’. Thus, any discussion on the

strength of high nitrogen austenitic steel needs to con-
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Fig.1
phase stability for iron base alloys with 23 weight-

Nitrogen in solid solution gives rise to fcc

percent chromium. Without nitrogen, such alloys
would never be even potentially austenitic, but very

stable ferritic

sider the effect of grain size is to be of academic value

or of practical value. An example of the effect of grain
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size 1s shown in Figure 2. Note that the yield strength
can vary from less than 600 to more than 1 200 MPa.

The three equations contained in Figure 3 are the
modified Hall-Petch equations for yield strength, Rp0.

2 ,ultimate tensile strength, Rm,and elongation to frac-

ture, A.The data in Figure 4 indicate that a metallur-
gist’s dream has come true: nitrogen in solid solution
increases the strength and the ductility at the same

time .

Fig.3 Schematic defining the mechanical properties relating to the grain size

yield strength(R, ;)and ultimate tensile strength(R,) /MPa
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Fig.2 Effect of grain size on strength and ductility
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Fig.4 Nitrogen in solid solution enhances strength and ductility at the same time

Cold work is one of the most effective ways to in-
crease the strength of high nitrogen austenitic steels, as
indicated in Figure 5: higher nitrogen contents in solid
solution result in higher work hardening coefficients.
With a sufficient degree of cold work, this can lead to
extremely high strength values.So far, we have obtained
3600MPa, Figure 6, and there is no theoretical reason
why this could not be pushed beyond 4 000 MPa in the
near future.

Strength alone is not the goal for the development
of structural materials. Rather, the combination of
strength and ductility, as shown in Figure 7, or the
combination of strength and fracture toughness, as
shown in Figure 8,must be the goal ,as this is what the
designer needs . Consider, for example, steels for modern
cars; they require strength in order to be lightweight
and thus fuel efficient for a sustainable economy. They
require also ductility for two reasons :for energy absorp-
tion during a crash,and thus crash safety,and for good
formability during production of components, for exam-
ple by internal high pressure forming. It is quite clear
from Figure 7 that high nitrogen austenitic steels are by

far superior to the ferritic steels presently used for car

making (with a yield strength less than 1 000 MPa)
when compared at equal ductility or when compared at
equal strength.

A closer inspection of the strength and fracture
toughness data in Figure 8 has shown that high nitrogen
austenitic steels not only exhibit the highest combina-
tion of strength and fracture toughness of all steels, but
of all materials in the world : there is no material which
shows a higher product of strength and fracture tough-
ness than high nitrogen austenitic stainless steels.

For many applications materials are needed which
have a high strength to density ratio. This is critical for
the light weight structures of a future sustainable devel-
opment . Examples are not only cars, but everything that
moves, including trains, ships, airplanes, rockets, and
also rotating components . We therefore show in Figure 9
the ductility of presently used car sheet steels as a
function of their strength to density ratio. Compared
with the car sheets are their alternative materials made
of Al,Mg, Ti, and high nitrogen austenitic steels. It is
clear that high nitrogen austenitic steels are superior not
only to presently used car steels, but also to Al, Mg,

and even Ti!
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Under triaxial stresses and impact loading, such as
Charpy V-notch tests, very high nitrogen containing
austenitic steels can fail in a brittle manner, as shown
in Figure 10 . The failure mechanism is glide band sepa-
ration along {111} planes of the fcc crystal lattice . This
puts an upper limit to the useful nitrogen additions in

high nitrogen austenitic steels.

3 Corrosion resistance

Nitrogen in solid solution increases the resistance

Of all the steels presently available, high nitrogen austenitic steels exhibit the highest

of austenitic stainless steels to general corrosion, pitting
corrosion and crevice corrosion . The resistance to pitting
and crevice corrosion depends on the alloy composition
according to the following correlation equation:

MARC = Cr + 3.3Mo + 20C + 20N - 0.5Mn -

0.25Ni

where MARC stands for measure of alloying for re-
sistance to corrosion and the elements symbols stand for
the alloying content of each element in weight percent.

The MARC correlation has been found applicable to
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both commercial and experimental austenitic stainless er,that within the limits of the austenitic stainless steels

steels, as seen in Figure 11 and Figure 12.1t is thus a investigated so far, one weight percent nitrogen confers

very valuable tool in alloy design. At this time there is as much corrosion resistance as 20 weight percent

no fundamental justification or explanation for MARC chromium.

available . The one most remarkable fact here is, howev-
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only to car sheet steels,but also to Al-, Mg-,and Ti- base alloys
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Fig.10 DBTT as a function of nitrogen . Extreme nitrogen contents render austenites brittle

Stress corrosion cracking in hot concentrated chlo- Figure 13 that both Type 304 and Type 316 austenitic
ride solutions is one of the well known weaknesses of stainless steels exhibit readily stress corrosion cracking

the austenitic stainless steels.Thus, it may be seen in in 22% NaCl solutions at 105°C.In contrast, our high
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Growth rates of stress corrosion cracks in austenitic stainless steels with 23 percent

chromium are much more resistant- say,immune- to chloride induced stress corrosion cracking at

105°C where both Type 304 and 316 austenitic stainless steels fail readily
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nitrogen austenitic stainless steels resist such cracking

even when cold worked up to a strength level of
1 400 MPa.

4 Applications

High nitrogen stainless steels have been made in
industrial quantities for many years, but only as niche
products i. e. for very specific applications of high
added value. Therefore, the production methods could
be expensive and often included pressure metallurgy,
such as pressurized electroslag remelting. Because of
the high quality of the products so obtained, this pro-
duction method will continue and expand in the future.
However, quite recently we have developed methods to
make high nitrogen steels with existing equipment for
large scale production such as NOD and continuous
casting and/or ingot casting. While improvements are
still desirable, it is now clear that high nitrogen stain-
less steels are ready for mass production as well as for
small scale high quality production.

The properties outlined above, as well as further
advantageous properties which space does not permit to
outline here, will make high nitrogen stainless steels

strong candidate materials for applications in the trans-

portation industry (cars, railroads, ships) , in the build-
ing industry (fixations, rebars for the general salvation
of our corroding infrastructure such as bridges and tun-
nels) in the aerospace industry,in ocean engineering,
in the sporis goods industry, and even in the nuclear
power industry and the military.

Because of their high strength, ductility and corro-
sion resistance high nitrogen steels can do more with
less material and products made of them will have
greatly extended useful service duration. These are the

hallmarks of steels for sustainable development.
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Numerical Simulation of Heating and Cooling Process of Steel

PAN Jian-sheng GU Jian-feng
(Shanghai Jiaotong University School of Materials Science and Engineering)

Abstract: In this paper, the mathematical model for heating and cooling process of steels has been
discussed in details . During numerical simulation, the incremental iteration method is used to deal with
such complicated nonlinear as boundary nonlinear, physical property nonlinear, transformation nonlinear
etc. The effect of stress state on transformation has been considered in the calculation of microstructure . In
the stress field analysis, a thermo-elastic-plastic model has been founded, which considers such factors as
transformation strain, transformation plastic strain, thermal strain and the effect of temperature and trans-
formation on mechanical properties etc. By means of simulation, the heating and cooling curve on any posi-
tion of steel parts can be obtained, and the transient temperature field, microstructure distribution and
stress field at any time can be displayed vividly . Combining with the specific examples, it is demonstrated
that the simulation of heating and cboling process of steels is an excellent practical approach of virtual
manufacture technique , which acts as one of the core technology of intelligent heat treatment.

Key Words: Heating; Quenching; Phase transformation ; Temperature field; Stress field; Finite ele-

ment method (FEM) ; Numerical simulation
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