

消減工業噪音 實用指南

A

Practical Guide for

the Reduction of

Industrial Noise

香港政府環境保護署 Environmental Protection Department

A PRACTICAL GUIDE FOR THE REDUCTION OF INDUSTRIAL NOISE

Environmental Protection Department Noise Policy Group

> 27th Floor, Southorn Centre 130 Hennessy Road Wan Chai Hong Kong

The inclusion of any information of any company or product or reference to brand names of any particular product in this booklet does not in any way imply recommendation or endorsement by the Hong Kong Government. The inclusion or reference is for demonstration purpose only and the non-inclusion of any product or company herein shall not be construed as disapproval of the Hong Kong Government. The data regarding any product herein have been certified to be accurate by relevant manufacturers or their authorized agents or representatives. However, no warranty or guarantee whatsoever is or shall be construed as have been given by the Hong Kong Government in respect of any product referred to herein. Readers are advised to seek independent expert or technical advice regarding the operation, use, installation, maintenance or otherwise of any product referred to herein.

TD 893 . 5 . H6 P72 1989

Printed by the Government Printer, Hong Kong 182442—400L—11/89

CONTENTS

	Page No.
LIST OF FIGURES LIST OF TABLES	5 7
PART I: INTRODUCTION	
1. WHAT IS THE USE OF THIS BOOKLET?	9
2. WHO SHOULD READ THIS BOOKLET?	9
3. HOW TO USE THIS BOOKLET?	9
4. QUICK REFERENCE GUIDE	10
PART II: COMMON LOCAL INDUSTRIAL NOISE	
PROBLEMS AND SOLUTIONS	
5. FANNOISE	11
6. DUCT'NOISE	13
7/ PIPE NOISE	14
8. WATER PUMP NOISE()	/ 16
9. AIR-COOLED CONDENSING UNIT/CHILLER NOISE	20
WATER COOLING TOWER NOISE	24
11. PLANT ROOM NOISE	25
12. PRODUCTION MACHINERY NOISE	26
PART III: SUMMARY OF NOISE REDUCTION	
PRINCIPLES	
13. PLANNING AND NOISE SOURCE CONTROL	
13.1 Selection of quiet equipment and processes	32
13.2 Siting of equipment	32
14. MAINTENANCE	
14.1 Planned maintenance	34
14.2 Machine condition monitoring	34
15. TRANSMISSION PATH CONTROL	
15.1 Acoustic enclosures	35
15.2 Barriers 15.3 Ruilding insulation	37
15.3 Building insulation 15.4 Silencers	38 39
15.5 Vibration isolation	40

Contents—Contd.

	Page No.
GLOSSARY OF ACOUSTIC TERMINOLOGY	44
REFERENCES AND BIBLIOGRAPHY	45
APPENDICES : COMMERCIALLY AVAILABLE NOISE CONTROL PRODUCTS AND LOCAL NOISE	
CONTROL SERVICES	46
APPENDIX A: DAMPING COMPOUNDS	46
APPENDIX B: NOISE CONTROL MATERIALS	46
APPENDIX C: SILENCERS AND ACOUSTIC LOUVRES	47
APPENDIX D : ANTI-VIBRATION MOUNTS	48
APPENDIX E : LOCAL NOISE CONTROL SERVICES	49
ADDITIONAL INFORMATION	51

LIST OF FIGURES

		rus	ge Ivo.
Figure 1	Fan turbulent air flow noise		11
Figure 2	Reduction of turbulence		12
Figure 3	Application of acoustic chamber and silencer for fans		13
Figure 4	Duct noise		13
Figure 5	Application of damping compound to reduce noise from vibrating ductwork		14
Figure 6	Application of composite lagging to reduce noise breakout from ductwork		14
Figure 7	Pipe noise		15
Figure 8	Application of composite lagging to reduce noise from ringing pipe		15
Figure 9	Anti-vibration mounts for pipes		16
Figure 10	Water pump noise		16
Figure 11	Partial enclosure for water pump		17
Figure 12	Acoustic enclosure for water pump		18
Figure 13	Enclosure and silencer for a pumping plant		18
Figure 14	Vibration isolation for pumping system		19
Figure 15	Air-cooled condensing unit/chiller noise		20
Figure 16	Acoustic enclosure for the compressor of an air-cooled condensing unit/chiller		21
Figure 17	Acoustic enclosure and silencer package for air-cooled condensing unit/chiller		21
Figure 18	Silencers and enclosure for a chiller plant		22
Figure 19	Inlet and discharge silencer package for air-cooled condensing units		23
Figure 20	Water cooling tower noise		24
Figure 21	Silencer and barrier for a water cooling tower		25
Figure 22	Plant room noise		25
Figure 23	Vibration isolation for plant and sound insulation improvement for plant room		26

List of Figures—Contd.

		I u	ge No.
Figure 24	Impact noise from collection hopper		27
Figure 25	Vibrating machine casing		27
Figure 26	Treatment to reduce impact noise		28
Figure 27	Treatment to reduce noise from vibrating surfaces		29
Figure 28	Friction saw enclosure		30
Figure 29	An enclosure for a plastic grinder		31
Figure 30	Siting indoor and outdoor plant		33
Figure 31	The trend of a machine sound pressure level measured at a reference point		34
Figure 32	Examples of enclosure design		36
Figure 33	Example of an open sided acoustic shed with screen		36
Figure 34	Acoustic screening by a barrier		37
Figure 35	Sound absorbing panel		38
Figure 36	Basic elements of an acoustic louvre		39
Figure 37	Silencers for fans		40
Figure 38	Transmission of noise by wall due to vibration		41
Figure 39	Anti-vibration mounts	۸.	41
Figure 40	Examples of vibration isolation for ventilating	, -	12

LIST OF TABLES

		Page No
Table 1	Sound insulation materials for machine enclosure	35
Table 2	General guide for selecting spring requirement	42

PART I: INTRODUCTION

1. What is the use of this booklet?

This booklet is written to provide a basic understanding and some practical solutions of common industrial noise problems that could affect the environment. It also serves as a useful reference of locally available products and services.

2. Who should read this booklet?

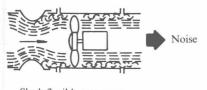
This booklet will be useful to plant managers and engineers, maintenance personnel, operators of noisy equipment and other readers who may have little acoustic background but may have to deal with noise problems from their industrial activities or machinery.

3. How to use this booklet?

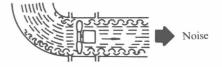
This booklet is specifically written for the purpose of problem solving. Therefore, readers with a particular noise problem can refer to the Quick Reference Guide in Section 4 of Part I, identify the type and nature of their noise problems, and go directly to the sections indicated there for possible solutions. It is, therefore, not necessary for readers concerned about a particular problem to read through other sections not related to the topic of their interest. For readers who would like to be further informed of the many noise reduction principles, Part III provides a useful and systematic summary.

It is intended that the booklet will be updated and expanded from time to time and the Environmental Protection Department would therefore be pleased to receive any additional relevant information.

4. Quick Reference Guide


Source of Noise Problem	Possible solution	Relevant Section
Fan	 Smooth air flow Treat with acoustic chamber Install silencer Replace worn-out bearing 	5 5 and 15.1 5 and 15.4 5 and 14.1
Duct	· Stiffen vibrating surface · Apply composite lagging	6
Pipe	Apply composite laggingUse anti-vibration mounts	7 7 and 15.5
Water pump	Use partial enclosureUse acoustic enclosureReplace worn-out bearingUse anti-vibration mounts	8 and 15.1 8, 15.1 and 15.4 8 and 14.1 8 and 15.5
Air-cooled condensing unit/chiller	Plan siting of equipmentUse acoustic enclosureInstall silencerReplace worn-out bearing	13.2 9 and 15.1 9 and 15.4 9 and 14.1
Water cooling tower	 Plan siting of equipment Install silencer Furnish acoustic mat into the water basin Erect barrier Adjust fan belt tension 	13.2 10 and 15.4 10 10 and 15.2
Plant room	· Improve plant room sound insulation · Use anti-vibration mounts	11 and 15.3 11 and 15.5
Machinery such as collection hopper, friction saw and plastic grinder	Select quiet equipment and process Add resilient pad on the impact surface Stiffen vibrating panel Use acoustic enclosure Erect barrier Apply acoustic lining Check maintenance condition	13.1 12 12 12 and 15.1 12 and 15.2 12 14.1 and 14.2
Complicated problem	· Consult noise control specialist	Appendix E

PART II: COMMON LOCAL INDUSTRIAL NOISE PROBLEMS AND SOLUTIONS


5. Fan

Problem:

- (a) Turbulent air flow noise
- (b) Whining noise at high rotating speed
- (c) High frequency tonal bearing noise

Slack flexible connector creates turbulence

Fan located immediately after bend creates turbulence

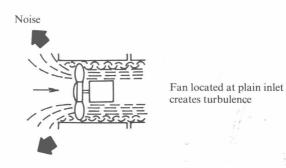


Figure 1 Fan turbulent air flow noise

Brief Description of Problem and Remedy:

	Cause of Problem	Remedy	R*
(a)	Turbulent air flow noise Generated by the turbulence of air due to obstacle in the air flow	avoid locating fans immediately behind heaters, cooling coils, bends, transformation sections	1
		avoid creating any sudden change in flow components	1
		fit coned or bell mouth shroud to all open running fans	1
		 enclose the fan unit in a chamber internally lined with sound absorbing material 	2
		install silencers	2
(b)	Whining noise		
	Resulted from high running speed of fan	· reduce the fan speed	1
		· re-select fans of lower rotating speed	2
(c)	High frequency tonal bearing noise Created by worn-out bearing	· replace the bearing	1

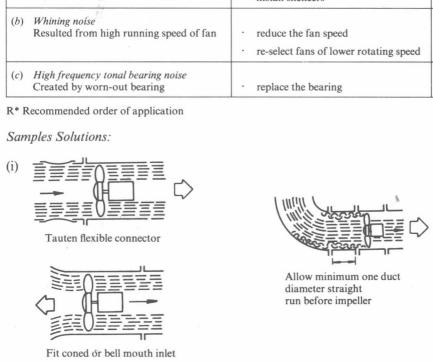


Figure 2 Reduction of turbulence

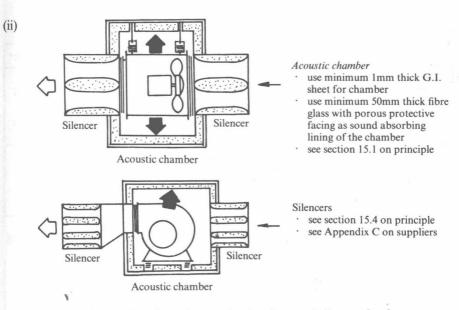


Figure 3 Application of acoustic chamber and silencer for fans

6. Ducts Noise

Problem:

(a) Rumbling duct panel noise

(b) Low frequency breakout noise through the duct surfaces

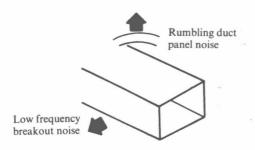


Figure 4 Duct noise

Brief Description of Problem and Remedy:

	Cause of Problem	Remedy	R*
(a)	Rumbling duct panel Duct surface is induced by the air flow to vibrate	 stiffen the vibrating panel with supporting webs apply damping material to the vibrating panel 	1 2
(b)	Low frequency breakout noise Noise inside the duct passes through the duct surface	 apply composite lagging of a sound absorbing inner layer and a heavy outside cladding to the entire length of the duct surface 	1

R* Recommended order of application

Sample Solutions:

(i)

Damping material

use bituman or rubber type material

see Appendix A on suppliers

Figure 5 Application of damping compound to reduce noise from vibrating ductwork

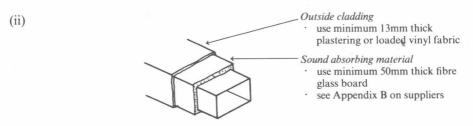


Figure 6 Application of composite lagging to reduce noise breakout from ductwork

7. Pipe Noise

Problem:

- (a) Ringing pipe noise
- (b) Structure-borne vibrating pipe noise found at other part of the building

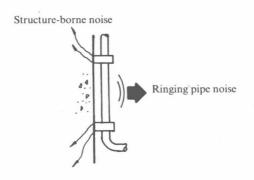


Figure 7 Pipe noise

Brief Description of Problem and Remedy:

Cause of Problem		Remedy		R*
(a)	Ringing pipe noise Pipe wall is excited and set into vibration by the fluid flow inside the pipe		apply composite lagging of a sound absorbing inner layer and a heavy outside cladding to the entire length of the pipe surface	1
(b)	Structure-borne vibrating pipe noise Vibration of piping is transmitted via the structure to other parts of the building		install anti-vibration mounts be- tween the pipe and its supports	1

R* Recommended order of application

Sample solutions:

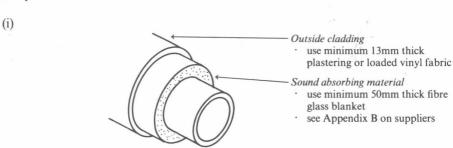
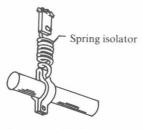



Figure 8 Application of composite lagging to reduce noise from ringing pipe

(ii) Ceiling mounting

Anti-vibration mounts

- · see Section 15.5 on principle
- · see Appendix D on suppliers

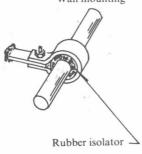


Figure 9 Anti-vibration mounts for pipes

8. Water Pump Noise

Problem:

- (a) Whining pump machine noise
- (b) High frequency tonal bearing noise
- (c) Structure-borne vibrating pump noise found at other part of the building

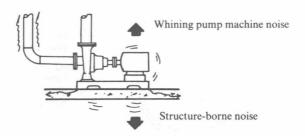


Figure 10 Water pump noise