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The Bending Theory Of Shell And Its App

PREFACE

This book is a systematic fundamental study for bending theory of shell structure
on the basis of " THE GENERAL THEORY OF SHELL AND ITS APPLICATION IN
ENGINEERING" by W.S.Wlassow. To start with the coordinate system, we derive the
fundamental differential equations for shell surface of any curvature. It contains two
parts :the first part is bending theory and expounds the physical hypotheses for
derivation ; the second part is its application in engineering. First three chapters are in
itheory and the remainder integrate theory with practice. Three general differential
equilibrium equations which are expressed in displacements u,v,w are derived in first
chapter. The fundamental differential equations of several usual shells are derived in
chapter 2. In chapter 3, differential equation of 8th order which only contains a normal
displacement parameter w is derived.

For practical purposes, the focus of this book is on the calculating formulae for
tress analysis in spherical dome with simply supported and fixed edges which can also
be used as building foundation under soft soil and clamped edges with skylight opening.

In rectangular flat shell with simply supported edges and in revolutionary one-sheeted
hyperboloid thin shell with simply supported edges which is a new type shell of negative
gaussian curvature may be available for use in roof structure. Let the curvature k; =k,
= 0 in rectangular flat shell it will become the formulae for plates. This book also gives
the tables of calculating results about several kinds of shell for design purpose. Also the
[TRUE BASIC source program for shell stress analysis are written. In addition, the
introduction of moment theory in hyperbolic paraboloid shell according to Wilby are
derived. Also the formulae for stress analysis of cylindrical shell are provided. An
engineering solution for the stress function ¢ of spherical shallow shell is given and the
ormulae of normal stresses N; N; are derived in order to complement this research
‘:)roject in reference [1].
This may be a reference book for students in colleges and technical institutes . It
is also hoped that it will be a handy reference book for the designer. The author wishes
lto acknowledge his indebtedness to the reader for their helpful advise and suggestions.
Appreciation is also due to the publications division for producing this book.

Wuhan, Hubei
July, 2002 Sken Gin-tas
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CHAPTER |
THE FUNDAMENTAL DIFFERENTIAL EQUATIONS OF SHELL BY BENDING THEORY
1. The Lama Coefficient in Curved Orthogonal Coordinates

(1) Radius vector in Cartesian coordinate expressed as in Fig. 1

]
M
" B
Y
i
Fig. 1 Fig. 2
OM =M = Xi + Yj + Zk 1

Where i, j, k are unit vector along ox, oy, 0z axes.

(2) A curved orthogonal coordinates is shown in Fig.2. When a, 8, y are constant
, the so formed surfaces are called coordinate surfaces. The intersecting lines of these
surfaces are defined as coordinate lines. Assume a point M is defined by the coordinates
o= =y =const. A point N is defined by the coordinates o +do. =const., B +dB =const., y +dy =
const.. So the total differential of radius vector M may be defined as

dM= oM da+ oM df + oM dy
da op Fops 2

Vector dM? is equal to the scalar of dS? which is the distance between M and N.

ds? = (0M )’ da® + (BM)’df* + (6M)°dy* + 2 CM oM Gadf+2 M OM dBdy

Oa op oy Oa CB op ¢y

+ 2 MM dy da
oy ¢a 3




The scalar product of two vectors ¢M oM, oM oM, oM OM 1sascalar. Incurved
cu 6 &éf oy Oy da
orthogonal coordinates, these products are all equal to zero. Hence Eq. (3) becomes

ds® = ( OM)* da® +( aM )" df° + (M) dy”

Cu cf Ay
4
From Eq. (1), we have
M= cX1+ Y+ CLk
oa oa ca da
cM=0Xi+ oY j+ CZk 5

op op op cp

oM =0X i+ 9Y ]+ 9Lk

f}y cy 6}: @;}
Take square of Eq. (5) and let

Hi?=(aM)2 = (X )’ + (&Y '+ ( eL )
da da. ca oa

Ha? = (AM)’ = (8X)* +(8Y)* +(oZ)* 6
B P B P

Hi?= (eM)* = (8X)*+ @Y)' + (8Z)’
» ¥ oy o

Therefore , Eq. (4) becomes
ds® = H,2da® + Ho2d? + Hy’dy* 7

Where H;, H,, H3 are Lama coefficients. According to Eq.(6), we get the relation between curved

orthogonal coordinates (a ,f, »* ) and Cartesian coordinates (x, v, z). The Lama coefficients can be
calculated as follows:

(a) Spheroidal coordinate
Leta=6. f=¢, y=r1
X =rSinf cosg
Y =rsinf sing
Z = R cost

2 2 2 2 2 ") . 2
Hi“=r“cos“#fcos ¢+r‘c05205m (p+rzsm2(}=r

2 . . o B 5 2
H,? =r“sm205m2¢ + rzsm“Hcoszqn =r2sin’g

2 .2 2 .2 . B
Hi" =sin “@cos “ ¢ +sin” dsin ¢+cosz()=]

So, ds’=r%dO%+r’sin*0deg’+ dr°




(b) Cylindrical coordinate

leta =1, f=¢. ;=12
X =r1cosgp
Y =rsm ¢
z= %

3 2 s 9
H~ =cos ¢ + sin” ¢ = 1
bl -

2 .2 2 2 2
H =r“sm ¢ + r"cos"¢g=r1

tz

Hs2=1
2 3. 3. % 3
ds® = dr +r°deg” +dz 9

D

Fig. 4

(c) Cartesian coordinate

Let a=X. p=Y. y=1Z

H\; =1
Hy” = 1
Hiy" =1
2 2 2 2
ds® = dx” + dy” + dz* 10

Fig.5

(d) For spheroidal shell where #= 90" in plane projection, Eq.(8) becomes
ds®=r? d¢2 +dr? 11
alternately set df = dy =0, da =dy = 0, and da = df = 0, we immediately obtain ds, =

H]d(l N dSz = szﬁ . dS3 = Hgdy and H] = dsu’da , Hz = dSz /d/} R H3 =dS3 /dy " illustrating the
geometrical interpretation of the Lama coefficients H; H, Hj




2. The Codazzi-Gauss Criteria For Curved Surface

Selecting the Z-axis as an axis of revolution . a point on the surface generated by rotating
the curve r=f(z) 1s defined by two coordinates viz. Z and ff Here Z is selected to be positive in
the downward direction and £ i1s positive for a clockwise rotation as viewed trom 0. which is the
center of the coordinate system. Hence the point M on the surface 1s uniquely determined by the

coordinates Z, 1, f3.

0
=eanst
z=cons B+ dB=xons
d 2\ B)
%1
s
z onst
(z#dz, p+dp)
/‘l
1
1
Z
Fig. 7

There are two independent variables, namely Z and f# . Any arbitrary constant value of
Z, Z=const. represents a horizontal plane which intersects the surface of revolution in a
parallel of latitude which diameter is a function of the value of Z. The plane = const
intersects the surface in a meridian passing through 0 and a point M on the surface of revolution.
The meridian for any other value of f# will have precisely the same shape. Point M , the
interception of a meridian and a circle of latitude on the surface of revolution is thus defined by
coordinates Z and . N, another point on the surface, adjacent to M, may be defined by the
coordinates Z+dz, f+ df. Now ds” = ds,? + ds,” where ds; is the displacement along the
meridian and ds; the displacement along the parallel of latitude. From Fig.7b . it is seen that




ds 2= dz + drP= (dz +dr®) dz° = (141 $)dz

5

dz”
dslz(h._rf.?)l/z dz
dS:: rdf
ds”=ds;” +dsy” = ( 1+r )dz” + r'dB’ = A’dz” + B*dp’ 12
Where A = (I + riz’)”2
B=r 13

This 1s the first of the generalized forms of equations in curved surfz:¢ theory, in which A and B
are parameters. If in Eq. (12) we set df = O then ds; = Adz, dz= 0 th:n ds;= Bdp. It is evident that
A is the arc length along a meridian for dz=1 and B is the arc length : ong the parallel of latitude
for dB=1. For a generalized curved surface with an arbitrarily select:1i orthogonal coordinate
system defined by the coordinates a and B, Eq.(12) assumes the gen¢ralized form

ds®= Ado® + Bdp> 14

Thus, the coordinate Z=const. in Fig.(7a) corresponds to a and the ¢:ordinate B=const.
corresponds to B. The coefficients will now be functions of a and B Ve may again write

ds; = Ada
dSz = BdB

Eq.(12) and (14) are of great importance in the theory of curved surzces and hence in
comprehending shell theory. Compare to Eq.(7) we have

H =A, H;=B and dy=0. 15
Still a second set of relationships plays a role in curved surface theo-: and hence also in shell
theory. These are related to the principal radii of curvature. From Fi. (7), we have

ds; =Rida,

ki=1=da= 1 _d_al
R, ds; (1+r 2)”2 dz

and r=R;sinq,

sina,; =dz= 1 =1
dsi (14122 A

cosoy =dr = 1 ¢=1_$=lr~
ds;, (143" dz Adz A




d (sinay) = d(sinoy) day = cosa day

dz da, dz dz
d sina)=d (A)=-A%dA=-1d (1+H)"=-1 1=« H"" 2rr =-1r1
dz dz dz  A’dz A?2 Al

k; = 1 doy = 1 1 d(sina)
(1+r 2)”2 dz (H-ryz)]'2 cosa dz
= 1 1 C- rr ) = - r =.1 dx
(1+r “)' cos O (1+r.2)3/2 (l+r~2)3/2 A} 4
16
The curvature of the parallel of latitude is
kx=_1_ = sing; = 1 = 1
R, r r(1+r 912 AB 17

Let the thickness of parallelepiped be y . we can derive the radii of curvature of coordinate
surfaces of parallelepiped in curved orthogonal coordinate system as shown 1n Fig.(8). The
intersecting points of coordinate surfaces of parallelepiped are defined as follows:

M: a, B,y

M;: atda, B,y
Maz: a, B+dB, v
Ms: a, B, y+dy

Thus the surface area and solid volum of parallelepiped are defined as follows:

dF, = HgH}dBd‘Y
dF; = H]H;dad‘y
dF3 = H]szadB
dv = H|H2H3dadBdY

N: a+da, B+dB, y+dy
Ni: «, B+dp, y+dy
N2: a+da, B, y+dy
Ns: at+da, B+dB, y

(MM; N; M)
(MM; No My)
(MM:N; My)

18

Now we can determine the radii of curvature of coordinate surfaces. The angles shown in Fig. (8)

are defined as follows:

dory = MiN2- MM; = ( Hsdy + 8Hady do)-Hidy = 1 OHa dy

MM,

oo H, da

Hida




A de
1g
1
3
dF
1 R
5 ds3 18
sz .
Y -~
" M0, 7B
1
dF3
N3
R3
a
ddy3), R3B
] 35
/
Fig. 8
doi1p=MiN3- MM, = ( H,dB + 0H.dB da) - HodB = 1 JH, dP
MM[ oo

Hida




M,N, .MM (Hady + cHady dp) - Hady

deay = MM: = op = 1 JHsdy
Hxdp Hs OB
dosct = MoN3.MM,; = (Hdo + 6Hyde dB)-Hida = 1 QH; da
MM, JB H, &
H,dpB

deia = M3N, - MM, = (H;da + 6 Hida dy) - Hida = 1 ¢&H; da
MM; oy Hz oy
Hsdy
19
dosp = MiNi- MM> = (H,dp +0H2dB éy) -Hadp = 1 JHo dp
MM3 0y H3 a“{
Hsdy
The radius of curvature may be defined as
1 = lim A 8
P pTp As '
Hence
kiy=doiy= _1_ JdHs
dssz HiH: Jo Fig. 9
kip==de/=_1 JH
dSz H1H2 é‘a
kpy=dexy= _1 CHs
dsa H2H; &B
20

k;a =Q(an= __]_a_HL
dS] H]Hg aB

ka=desa= __1_ OH;
dS] H]H} (}Y




kip=de:f=_1__ cHy
dS: H2H3 C’Y

According to the geometrical hypothesis of the shell theory. the line normal to the middle surface
remains normal after deformation. Its length 1s unchanged. Therefore in Fig.(8), axis MM; is a
straight line. Hence in Eq.(7) where Hy=1. The radii of curvature which corresponds to Fig.(7) are

ki=dosa=1 oHida = _1_ ¢H, =1 ¢HA

dsy, _Hicgy HiHz oy A Oy

H]d(l
aH|=Ak|6‘{
Hi = Akyy
ka= _desf = 1 SHxdB= _1 ¢H: =1 ¢H
ds> Hy oy HHs &y B oy
H.df

OH; = Bka dy
H, = Bkay

The Lama coefficients of the surface varies with a distance y apart from the middle plane along
the normal line are

Hy = A(1+ky)
Hz =B(1+ kz'{)

H:=1 21

3. The Elongation And Shear Strain Of Parallelepiped In Curved Orthogonal Coordinates

There are six forms of deformation near point M in Fig.(8). That is , the elongation along
perpendicular lines MM,, MM, MM3, and the shear between perpendicular planes dF;, dFz, dFs.
Let e o, € pp and € ,, are the relative elongation of MM,;, MM,, MM3, respectively and eug, g,
and e,, represent shear strain. The total elongation in a direction is the sum of
elongation in a direction and the induced elongation in that direction caused by the
elongation in B and y direction. Let the elongation of point M in a direction be u,, then
from Fig.(10) we have




-

Caa1=_OUy = _CUy
dS! H[C‘a

Y
u ¥ d ¢3 a
Uy
M
1
a g db a
(a) (b)

Fig. 10

€uwe2= UWpdopa=upl SHyda =usp__1_0JH = upkea
Hida H> 0@ H:H; aﬂ
Hida

Caa3=Uydosa =u, 1 OHjda = u,__1 JH; =u, ks
H]da H3 5'}’ H|H3 57‘{
Hlda

The total elongation in o direction is

(S =¢c aal + c aa? + e(}.a} = 6U(1 + 1 aHl u[j + 1 61_.[4 u-‘,'

Hido H;H; 6B H Hz 0)/

Similarly

epp= 1 __Oup + _1

SHyu,+_ 1 0H, u,

Ho ¢B H>Hs oy HiH; da
ep,= 1 _ 0du +1 CHyu,+_1 JHiug

H3 (}Y H]H} da H2H3 (')B

22




The shear strain of dF,. dF, and dF; are constituted by two parts in each plane. In aff plane
(dF3), the total shear strain is the sum of the relative angular displacements of ds; and ds:. as
shown in Fig.(11). The angular displacement increases as the point moves from M to M (uy). Its
value equals to éu./ ds2. For MuM (ug), the angular displacement decreases with a
value of Adep.

vdp = deiP ug=kip up
dSz

So the relative angular displacement of ds; in aff plane may be defined as follows

€apr =__OUy - Ado=_0du, -kipug

552 OS;:
Also
eupr=_0Ug - AdQ=0up - dexa . = dup  — koot Ug
551 a‘Sl dS| asl

The total angular displacement in af plane is

€op = €apl Teup2=_0OUy  -kifugt_oug — ko Uy
Csy Os)
=_Ouy -1 OHp ug+ Qug - 1 OH)u,
HzaB H[H; 5(1 H.aa H1H2 GB

=H 6 (Lu)+ H &6 (Lu)
H1 o Hz Hz aB Hl

Similarly
e =_Hs 6 (1 u)+ Hy ¢ (1 up)

H> 68 Hs H; &y H» 23

eyaZM_(l U.1)+ _M(l uY)
Hs &y H, H, oo H;




Fig. 11
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