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EARTHQUAKE ANALYSIS OF COUPLED GHEAR WALL BUILDINGS

by

I
T. Sricha‘t-ra.pimkI and Anil K. Chopra 1

SUMMARY

An efficient technique eapecially sulted for computer analysis of cou-
pled shear wall buildings is outlined. Application of the technique to
analysis of earthquake-damaged buildings iz demonstrated.

INTROIAICTIOR

Coupled shear wall buildings have wsually been analyzed by computer
programs based on standard methods of building frame analysia, These
analysis methods, ia determining responses to horizontal ground meotions,
neglect inertia forces in vertical and rotetional degrees of freedom.

By static condensation of thepe degrees of freedom, the dynamic eguations
are formulated in terms of lateral displacement and the problem size is
greatly reduced. However, such a formuilation is generally insppropriate
for coupled shear wall buildings because vertical inertia effects of wallm
can be sigrificant in the dynamies of such structurss.

Because the stiffness, atrength, and stahility of coupled shear wall
buildings is largely due to the walla, they should be designed to remsin
essentially u.nda.'mp.;ed in the event of an earthquake, The benefits of
energy dissipation through inelastic action can be provided by yielding of
the coupling beams. Therefore, this investigation mgsumesz. that the valls
are linearly elastic, thus confining ylelding to the coupling besms.

The objectives of this paper, which summarizes scme results from the
complete report® on this study, are: (1) to present an efficient technigue
especially suited for computer analysis of coupled shear walls; and (2} to
demonstrate application of the technique to analysis of earthquake-damaged
buildings.

OUTLIRE OF ANALYTICAL PROCEDURE

The end shear wall of the building shown in Fig. 1 may be idealized as
the giructural assemblege shown in Mg, 2, with three wide-column lines
(located at the respective neutral axes of the walls), and beams at every
floor level coupling adjacent walls., The corper spandrel beams may be
neglected; the wali-beam panel zone is idea.lized by rigid links. .

Coupling beams in coupled shear wall build.‘lnss are usually deep and
subjJeet to high shear, rdsulting in shear cracking, normally accompanled
by yielding of stirrupes and flexural reinforcement.® Shear cracks and
suhsequent ylelding are not localized at end gections of bsams, but are

I Faculty of Engineering, Chieng Mei Univ., Chieng Mai, Thailand;
formerly Graduate Student, Iniv, of Calif., Berkeley
II Prof. of Civil Engineering, Univ., of Calif., Berkeley.



spread over a subetantial portiorn of the span. Therefore, instead of using
the end sectional wmoment capacities, "'yl or l«!._,,g, to pignify s change in
beath stiffness - as is donme with flexura]l beams ~ the ghear P, = { 1t Hye}/s,
whick dlrectly reflects nonlinearities due to diagonsl shear xracki or
stirrup yielding, is used to decide whether or not a change In stiffness
has occurred. A bilinear hysteretic force-deformeticn relatiocn is assumed
for coupling beams, contrelled by a bilinear shear-average end rotation
relation (Fig. 3a) which can be obtained from laboratory experiments.?

This model implies simultaneous changes in stiffnese in the moment-rotation
relstion at both ends of the beam, reflecting nonlipesr effects distributed
throaghout the beam span, not jJust at the enda (Pig. ).

By considering bending and axiel deformaticms in wells; bending, sxial,
and shear deformetions in coupling bemws; including inertia forces aseociated
with lateral as well a3 vertical motione; and using variatlonal prineiples,
the equations of motion were first formulated in the nodal point degrees
of freedom (DOF): vertical, horizontal, and rotational 4isplacements at
each beam-wall (wide column} joint in Fig, 2. The number of there equa-—
tions inereases rapidly ae the number of walla and stories increase and
their solution requires large computational effort.

In Pig. b, the first 10 natural vibration mode phapes camputed for the
McKinley Building® ere compared to the vibration mode shapes of the indi-
vidual walls of the bullding. The general similarity of the two sets of
mode shepes suggests that dlsplacements of the structure may be effectively
expressed ag a linear combination of the natural mede shepes of vibration
of individual) wells. Thus, the digplacements at the nodal points on the
Jth wall are expressed as & linear combination of the first few natural mode
shapes of the jth wall, coneidered as en individual cantilever. Local
Plastic rotation at the bage of a wall may be consifered by fmeluding the
agsoclated rigid body displacement of the atructure me an additiopal shape
function. The equations of motion are transformed to the associsted gen-

ralized coordinaetes, If e small nurber of generalized coordinates suffice
-0 prediet responss accurstely, the number of eguations and the computational
zffort would be reduced coneidersbly, as discussed in the next section.

Kot only does the numerical step-by-step integretion of the reduced
systen of equationa require ccnsidersebly less computetionsl effort than
does the original system, Put a larger time step may be used in the inte-
gration, beceuse the higher vibration modes, having very short vibration
periods and contributing negligibly to structural response, are eliminated
by the transformation to generalized coordinates.

EVALUDATION OF REDUCTION TECHNIQUE

The simple idealization presented in Ref. 3 for the MeKinley Building
(Fig. 1} was employed to evaluate the effectiveness of the above—described
technigue for refmeing the number of DOF. Coupling beams were assumed to
span the two end walls and the middle pier waa ignored. A reduced eystem of
equations is designated by fip¥,, where m and n denote the number of modegm
>f lateral (horizontsal) and longitudinal (vertical) vibration, respectively,
of each wall included in the enaiysie., The nstural frequencies and mode
shapes of the coupled shear wall system, medal stress resultants, and the
nonlineer response .of the system are computed from the original gystem



{"exact” apnalysis}of equatiohe in nodal point ccordinates, and from the
reduced system of equations in generalized coordinates.

The first six natural freguencies and mode shapes of the structure
were satisfactorily reproduced by the H Vh system, whereas the first nine
mpdes were more accurately reproduced %y the H6V syatem [Fig. 5). Because
the more significant displacements in the lower médes of vibration of the
gtructure are in the lateral direction, it is effective to inelude a larger
proportion of leterql vibration modes of the walls.

Although the deflected shape of the First adtisymmetrical mode was
very accurately reproduced by solving the eigenvalue problem for the nlsvs
reduced system, to within 2%, predictions of the asgociated shear and
bending moments in the walls were extremely inaccurate (Fig. T). Stress
reaultents were inaccurate beceuse the moments in the walls associated with
the deformetions in vibration mddes of individusl walls vary gradually along
the height, whereas their actual distributlion is discontinuous due to the
moments at the ends of coupling beams. However, the predicted wall moment
smoothly averaged the discontinuity in moments at the beam level. Shesr in
coupling beams, however, was predicted accurately (Fig. 7).

The atress resultants for the walls obtained by analyzing the reduced
system were corrected by distributing, as shown in Fig. 6, the besm end-
mements to the wall above and below each beam-wall joint. & correction was
aiso necessary at the base of the structure. Shear forces in the wall are
then correspondingly adjlusted to equilibrate corrected bending moments. By
applying the above adjustment procedure, the corrected bending moments and
shears obtained from analyzing the HGV reduced system —- a much less refined
system than the H 5‘18 one —- sa‘bisfactgrﬂy agreed with the "exact" values
(Fig. T}. The HgVq Feduced system, with this adjustment, also satisfactor-
11y predicts the szress resultants agsocimted with the third antisymmetrical
mode shape (Fig. 8).

Two approaches were ugsed to determine the nonlinear response of the
simple idealization for the Mt. McKiniey building, wherein yielding of the
coupling beams is considered, to & simple ground motion, described by a ]
half-cycle of displacement®, with maximm acceleration = 0.5 g in the hor-
izontsl ddrection and one—thirdé of thet in the vertical. The HGV reduced
Bystem was apalyzed by the procedures outlined earljer and the eqéations
in nodal point coordinates were solved by DRAIN-ZD®, & computer program
based on standard frame analysis procedures. The results (Figs. 9 and 10)
indicate that the two analyses lead to esgentially the same displacement
response, but the forces determined from DRAIN-ZD enslysis oscillate sbout
those determined from analysies of the reduced system. These oscillations
do not disappesr even when the integretion time step in the DRAIN-2D analy-
sis ia reduced to half the value used in analysis of the reduced system.

An operatiom count indiecates that the computational effort required for
analysis of the reduced system is 20X to 50% of that required for the ori-
ginal system in nodal point coordinates. Obviously, with the ume of gen-
eralized coordinates, not only is the size of the problem and computational
effort greatly reduced but, by eliminating the unimportant higher modes

of vibration, the spurious oscillations in the numerical caleculations are
eliminated,.



ANALYSIS OF EARTHQUAKE-DAMAGED BUTLDINGS

Some of the dammge to McKinley Building caused by the 1964 Alaska
earthquake is apperent in Fig. 1. The response of the mathematical model
of an end wall of the building (Fig. 2) to a simlated motion®, intended
to represent the ground sheking in Anehorage, was deterpmined by the pro-
cedure outlined earlier. The results are simmarized in Figs. 11-13.

Beams on the seccnd through eighth stobies undervent the most exten—
give ylielding, each of which accumilated a Lotal plastic rotation of more
than ¢.02 radians during more than 20 yielding excursioens {Fig. 11)}.

Cyclic rotation ductility demand exceeded 10, an.excesgive demand for an
ordinarily reinforced deep Beam. The anslysis thus predicted severe
inelagtie action in these beams which falled due to inedequate ductility.
The prediction was generally consistent with the observed damage, beams
from the sécond through the nintk stories having been severly damapged during
the earthgquake.

Axisl force emvelopes for walis (Fig. 12) indieate no resulting axial
tenaion, and therefore no possibility of upllfting of the foundation or
fallure of walls in tension. A significant difference in the magnftude of
developed axial compression in two identical walle gave rize to substantially
different sectional moment capacities. Therefore, one of the two identical
walls with smaller moment capacity was more vulnerable to yielding than
the other wall; this is consietent with the cbaserved damage.

Although yielding in walls was not considered in the analysis, it can
be examined by studying the force dlstribution et selscted time stepas. For
example, at .t = 16.9 seponds, beams in the third through eighth storiss had
Just undergone three lerge, consecutive yielding cycles. They were apsuemd
to fall at this point and part of the resistance to story overturndng moment,
formerly offered by axiel forces in the walle, waa no longer available at
thede storlea. Wall sections across affected stories had therefore 4o re«
sist more moment to compensate for the loss of the axial-ferce couple. This*
additional moment was essumed to be resisted equally by the two outside walls.
The resulting moment distribution is presented in Fig. 13, indicating that
wall sectlons from the fourth story down were streased beyend yielding capa~
city. Although actusl redistribution of the couple due to axial forces in
the walls efter. some beams have failed is mueh more complilicated, this simple
analysip of redistribution of moments indicates a yielding tendency in thesge
lower atory wall sections.. In fact, yielding did occur in the third story
wall section {Mg. 1). . .

" A gimilar analytical imvestigstion® of the performance of the Banco de
America building during the Mangun earthquake led to conclusions consistent
with the actual damege. Coupling besms underwent giguificant yielding but
the walls were essentially undamaged. The excellent performance of this
building suggeats that, for coupled shear walls to be most effactive as &
structural system, walls should be degigned to remain elastic, thus Jjustify-
ing thke assumption of linearly elastic walls in thizanaiytical procedure.

CONCLUSION

Under the assumption that inelastic action is confined to the coupling
beama, coupled shear wall buildings can be most effectively manalyzed by
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