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Preface

This book covers the material for a first full university course in geometry;
specifically it is an introduction to the geometry of plane curves, given as
parametric curves, algebraic curves, or projective curves. It is intended for
students who have previously studied elementary calculus including partial
differentiation, the elementary theory of complex numbers, and elementary
coordinate geometry. It is developed from a one-semester geometry course I
have given over a number of years to undergraduates specialising in math-
ematics, statistics or computing, or following degree courses involving a
substantial study of mathematics.

My aim in writing the book is to make the material covered readily
available in one book and in a form suitable for a modern first university
course in geometry. Previously in order to cover the material in the book,
it was necessary to read isolated sections of a number of other texts of
varying levels of sophistication. Topics covered here have been integrated
and presented in a manner suitable for a first course, and new elementary
proofs have been developed where possible. Most of the material included is
what I believe would be termed elementary in modern university terms, and
as far as possible the proofs I have given use only elementary ideas. I have
starred a small number of conceptually or technically more difficult sections
and proofs; these may be left for a second reading. I have also starred a
small number of sections and results which can be omitted depending on
the time available. A large number of exercises of varying difficulty are
included as are many worked examples. I believe that in geometry, as in
most areas of mathematics, doing exercises helps the student more quickly
to understand and to appreciate the subject. Solutions to exercises are
included roughly on an alternate basis. One of my main aims has been
to lay out a mathematical structure, understandable to modern students,
which can be used for solving problems, rather than to provide a catalogue
of theorems; this, I believe, is also a main aim of many modern first courses
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in calculus or algebra. I have included numerous figures to illustrate the
ideas, proofs, and solutions, and to illustrate specific classical curves.

Many students have obtained degrees in mathematics having studied
little or no geometry at university or at school, a situation which is, I
believe, regrettable. The publication of this book coincides, I believe, with
the rising interest in the return to the study of geometry at university
level. The book will be suitable for use in many mathematics departments,
including those where a complete geometry course is not currently taught
and that wish to introduce one, since it provides an elementary introduction
to a number of important areas. Students who successfully completed the
course on which the book is based developed a heightened appreciation of
geometry and many of them went on to study more advanced courses in
differential geometry and/or algebraic and projective geometry.

An introductory chapter contains, for clarification and reference, basic
material which will already be known by many readers. In the first chapter
the basic equations of lines, circles, and conics are given; the relationship
between parametric, algebraic, and polar equations is considered. The tech-
niques for classification of conics in general position are given in the sec-
ond chapter. The third chapter presents examples of some higher algebraic
and transcendental curves having features such as cusps, nodes, or isolated
points, which do not occur in the case of conics. In the fourth to ninth
chapters, the standard properties of parametric curves are obtained, includ-
ing tangents and normals, inflexions, undulations, cusps, and curvature;
some of these properties are applied to give properties of algebraic curves
such as tangents, normals, and curvature. In the tenth chapter, features
such as cusps, inflexions, and curvature are used to classify limagons into
five classes. In the eleventh, twelfth, and thirteenth chapters, the evolute,
parallel, involute, and roulette of parametric curves are considered. The
fourteenth chapter gives an account of envelopes of families of parametric,
algebraic, and other curves. In the fifteenth chapter tangents and branches
of algebraic curves at singular points are investigated. The sixteenth chap-
ter studies projective curves and their relationship with algebraic curves,
including applications to asymptotes and boundedness. Throughout the
book many classical curves are considered as examples and some are stud-
ied in more detail. I have included sections on the history and applications
of several classes of curves such as conics, spirals, cubics, trochoids, and
Watt’s curves.

As well as giving the classification of conics in Chapter 2, a classification
of cubic algebraic curves is given in Chapter 15 using the results on singular
points.

I have followed the analytic method almost exclusively in the sections
on algebraic and projective geometry, and have often used the calculus in
proofs. Early in the twentieth century, certain purists would have objected
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to these methods, but with changing fashions, needs, and current school
syllabuses, there are, I believe, few now who would. A university course in
synthetic geometry would in any case have objectives quite different to the
ones of this book.

I give the analytic description of projective space and base, for example,
the proofs and techniques for asymptotes and boundedness on that de-
scription. Additionally, I have, in Chapter 16, indicated how the projective
plane can be obtained by identifying opposite pairs of points on the sphere;
this is perhaps the most sophisticated concept in the book, but I believe
that understanding this geometrical construction will lead the reader to a
fuller appreciation of projective space, the projective method and projec-
tive curves. However this geometrical construction could be omitted until a
second reading. I have also included a number of ways in which projective
curves can be drawn or pictured, since I believe that such representations
will aid the reader to achieve a fuller understanding of these projective
ideas.

The book is essentially self-contained. I have included in Chapter 2 results
on and methods of orthogonal diagonalisation of quadratic forms in two
variables. These are used in the classification of conics, in moving a conic
to canonical position. I have also included at the end of Chapter 4 results
in calculus and analysis which are used in the book.

The lecture course given was supplemented by practical classes. In the
practical classes the students, collaborating in small groups, draw curves
by hand using a variety of techniques, including rectangular and polar plot-
ting, enveloping, and the methods of conchoids, cissoids, and strophoids.
Although not essential to the course, practical classes are particularly pop-
ular among students and I recommend their adoption. Completion of the
practical work helps and motivates students to understand the theory. The
drawing of curves is one of the visual-art forms of mathematics and gives
students the opportunity to achieve satisfaction in a non-theoretical part
of the subject. I have included in Chapter 17 a list of practical projects
suitable for students to share in groups of six, with each student in the
group generally drawing a different curve. This can be modified as required
by the lecturer. As an alternative to their use in practical classes, a selec-
tion of these projects could be used for take-home assignments. Plotting
curves using computer packages is also popular, and a number of packages
are available including Maple, MATLAB, and Mathematica. The drawing
of curves by hand could be partially or wholly replaced by computer draw-
ing in the practical classes and curve-drawing exercises. Some programs for
drawing sized curves in MATLAB are given in Chapter 18.

In the practical work and some of the exercises involving curve-drawing,
some standard ready-drawn curves are needed. There are many packages
which can be used for drawing curves. In Chapter 18 programs are given
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for use with MATLAB for drawing these standard curves. A program for
drawing polar graph paper is included for localities where such paper is not
available.

A list of books for further reading is given in Chapter 19.

As well as being suitable for students aiming for degrees having a high
content of mathematics, the book is also appropriate for students of math-
ematically based subjects such as engineering, who also may be required
to study plane curves at some depth.

The book could also be used as a supplementary text for courses in
calculus, vector calculus, linear algebra, differential geometry, singularity
theory, algebraic geometry, and computer graphics.

My thanks are due to a number of people including Ian Porteous for
his support in the course, Victor Flynn and several reviewers for reading
some of the chapters and suggesting improvements, Peter Giblin for advice
on computer graphics, Rachid Chalabi and Steve Downing for advice on
the use of WTEX and for its smooth running, and Dave Alliot of Chapman
and Hall/CRC production for his detailed reading and advice. I am also
grateful to students of the University of Liverpool who tried out drafts
of the manuscript in class; the high satisfaction rating they expressed in
student surveys and individually was an incentive.

Relevant documents and developments subsequent to publication may
be available on the following linked websites.

WWW.Crcpress.com

www liv.ac.uk/~jwrutter/curves
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