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Preface

This book originated in a course given at the Technion some 10 years ago
during my first stay, as a visitor, in Israel. Things were different then. Path
integrals were not in the mainstream of anything, and I think those who
studied this topic did so more from an aesthetic turn of mind than for
practical reasons. Either that, or they still carried forth the ideas of the
1950s when path integration had its great, early successes. My own interest
in the subject is accidental—while reading an article in Schwinger’s reprint
collection on quantum electrodynamics the pages slipped and the book fell
open to Feynman’s Reviews of Modern Physics paper. This I read, and
resolved, as a thesis topic, to try to produce a path integral for spin.

Path integration has come a long way in the 1970s. In statistical
physics it was the basic framework for the first formulation of the renor-
malization group transformation. It is used extensively in studying systems
with random impurities. In particle physics it is basic to the instanton
industry and finds application in studies of gauge field theory (even though
some of the methods used had been developed for other problems in the
1960s). In chemical, atomic, and nuclear physics path integrals have been
applied to semiclassical approximation schemes for scattering theory. And
in rigorous studies of quantum field theory and statistical mechanics the
functional integral is used again and again.

This is a book of techniques and applications. My aim is to say what
the path integral is and then by example to show how it can and has been
used. The approach is that of a physicist with a weakness for but not an
addiction to mathematics. The level is such that anyone with a reasonable
first course in quantum mechanics should not find difficulty although
some of the applications presuppose specialized knowledge; even then, on
topics of special interest to me I have supplied background material
unrelated to path integrals.

The implications of path integrals for a general understanding of
quantum mechanics have been beautifully expounded in Feynman’s origi-
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nal Reviews of Modern Physics paper and in his book on path integrals with
Hibbs. For this reason I have touched only lightly on these matters. The
Feynman-Hibbs book also includes many applications of path integration,
some of which have been given brief treatment here. The emphasis in that
volume is on applications developed by Feynman himself, and while they
form a considerable body of knowledge there is still enough left over for
the present book.

The first part of the book develops the techniques of path integration. .
Our basic derivation of the path integral presents it as a mathematically
justified consequence of the usual quantum mechanics formalism (via the
Trotter product formula). Of course we also talk of summing the quantity
exp(iS/h) over all paths, despite the lack of rigorous justification for such
terminology. In fact some of our work makes extensive use of this view.
Nevertheless, while I have been willing to work without the full blessings
of theorems at every step, I have tried to avoid some of the pitfalls that
path integrals offer to the unwary. In particular there is a good deal of
discussion of the relation (Adistance)®’~ (Atime), a central property of
paths entering the Feynman sum over histories. Some of the usual quan-
tum formalism is recovered from the path integral but no great emphasis is
placed on this goal. The explicitly solvable path integrals— the harmonic
oscillator and variations thereof —are written out, and it is thus shown that
the awesome task of summing over paths can in fact occasionally be done.
At this early stage we also introduce the Wiener integral, formal first
cousin of the path integral and legitimate integral over paths. Here we are
able to indulge in an occasional rigorous proof and present a calculation of
a first passage time, illustrating the profound connection provided by the
Wiener integral between probability and potential theory.

The choice of applications that appear in this book requires a special
apology. For a topic to be treated here, I had to first know about it, next
understand it (or think I did), then find it amusing, exciting, fundamental,
or possessing some similar quality, and finally have the time to present it.
There are undoubtedly works that satisfy the third of my criteria but miss
out on some other count. Section 32, being a brief treatment of some
omissions, reflects the fact that the book had to be finished some time
although many beautiful applications would not appear.

As to the applications that do appear.... A lot of space is devoted to
the semiclassical approximation. Although the mathematical justification
for the stationary phase approximation to the functional integral is not
strong, this is an important application, at least in terms of consumer
interest. Also, one of the features of Feynman’s formulation of quantum
mechanics that first impressed me was that the correspondence limit
(h—0) was a wave of the hand away (via the stationary phase approxima-
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tion). Of course converting the hand waving arguments to mathematics is
still an uncompleted job, but that does not detract from the beauty of the
ideas. I must also confess that I am drawn to the semiclassical approxima-
tion not so much by consumer interest but rather by the way in which so
many different strands of nineteenth and twentieth century mathematics
are brought together. Between Sections 11 and 18 the following topics—all
relevant to the matter at hand—are taken up: (1) variational principles o |
classical mechanics and minimum (rather than merely extremum) proper-
ties of paths—the Jacobi equation; (2) the Morse index theorem; (3)
asymptotic analysis, order relations, and so on; (4) Sturm-Licuville theory;
(5) Thom’s catastrophe theory; (6) uniform asymptotic analysis.

Starting from semiclassical results it is not difficult to derive both
approximations for scattering theory (Section 19) and a path integral
theory of optics (Section 20). The optics calls for some unnatural defini-
tions but I think the reward is worth the temporary inelegance: semiclassi-
cal results for path integrals lead at once to geometrical (and even
physical) optics with a possibility of getting Keller’s “geometrical diffrac-
tion” theory too (that possibility is suggested but not carried out in this
book).

Probably the most famous early application of path integration is to
the polaron and we treat that here too. What makes the polaron special
from the standpoint of selling path integrals is that it is one of the few
places where the path integral not only helps you discover an answer, but
also remains the best way to calculate the answer even atter you know it. I
like the polaron because it is a tractable field theory; the benefits obtained
from using the path integral are entirely analogous to those gotten in
quantum electrodynamics, but for the latter all steps are more difficult
because of the infinities, the vector character of the field, and gauge
problems. Results of the path integral treatment of Q.E.D. are mentioned
briefly in Section 32.

Three sections are devoted to the problem of formulating a path
integral for spin. Not surprisingly I place the most emphasis on the
approach I myself have worked on. To be honest, if I had to solve the
problem of a hydrogen atom in a magnetic field I would not use this
formalism. Nevertheless, the method shows there is some way to treat spin
by path integrals. It would also appear that some of the connections to
homotopy theory developed in the course of working out a path integral
for spin are turning out to be important in gauge theories. Unfortunately,
path integral treatments of gauge theories get only the briefest mention in
this book; this is one of the gaps I especially regret.

The section on relativistic propagators is both central to the book and
an incidental side topic. It is central, because if you wish to think of path
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integrals as telling you something fundamental about quantum mechanics
then you had better have a relativistic formulation, since that’s the way the
world is. On the other hand, the most dramatic part of Section 25 deals
with particles in the strong gravitational fields near black holes. This
application certainly demonstrates the versatility of path integration. For
this section some background in general relativity is needed.

Statistical mechanical applications of path integration could easily
take up a book on their own. The partition function, the basic object of
statistical physics, is most conveniently written as a functional integral for
many physical systems. In Sections 26 to 30 both general developments
and specific applications are treated. Systems with random impurities are
studied although our greatest expositional efforts are not concentrated on
the currently most popular developments. The references however cover
some of the missing material. The instantons of the 1970s and all their
_ aliases first appeared as critical droplets in path integral studies of metasta-
bility in first order phase transitions. Our own treatment takes a neutral
view of the physics and presents the method as a way of doing an
analytical continuation. The renormalization group and scale transforma-
tions have been an important recent application of functional integration
and Section 30 deals with this.

The section on coherent states finds itself in the statistical mechanics
" department almost by accident: one of the applications of this form of the
path integral is to the statistical mechanics of boson field theories. Right-
fully this could have been put with the section on the phase space path
integral with which it has strong ties. As to the section on the phase space
path integral, I have included it somewhat reluctantly. Although the reader
will soon find that I am not overly fussy about dotting all my mathemati-
cal i’s, I think that phase space path integrals have more troubles than
merely missing details. On this basis they should have been left out of the
book; however, I often have conversations with people who use this form
of the path integral and they want to know what all the fuss is about.
Section 31 aims to answer that question.

The final section gives various applications that I just couldn’t leave
out, and of course, so as to finally finish the book (gestating lo these five
years), some topics were left out.

Each section of the book has its own set of references and notes, since
I felt that this gave the best opportunity to present background and
ancillary material. For convenience however these references are included
by author in the index.

There is some previously unpublished work in the book. Much of this
occurs in the sections on the semiclassical approximation. The material on
caustics was reported in a 1973 conference and was never fully written up,
pending its appearance here.
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ONE

Introducing and Defining
the Path integral

The best place to find out about path integrals is in Feynman’s paper.*
Our approach is not to use path integrals as a way of arriving at quantum
mechanics, althcugh Feynman has used this point of view in his book with
Hibbs. Rather we assume knowledge of quantum mechanics and deduce
the path integral formalism from it. This gets us into the subject quickly.

The wave function of a nonarelativistic spinless particle in one dimen-
sion evolves according to Schrédinger’s equation

—ind¥ \

Hy=ih 5 (1.1
1, —n? 3

H=T+V= mp + V= 2m ax2+V (1.2)

Our interest is in the propagator or Green’s function G which satisfies
the equation
9

(1‘1— ih 1)

)G(t,t0)=—im§(t—io) (1.3)
in operator notation. In coordinate space this is written

(Hx—ih-éa?)(}(x,t;y,to)=-—-ih8(x—y)8(t—to) (1.4)
The G’s are related by

G(x, 15y, 1) =<x|G(t,19)|¥> (1.5)

*For references see notes at the end of the section.
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Knowing G means having a solution to the time dependent Schrodinger
equation in the sense that if y(1,) is the state of the system at ¢4, y(1),
given by

V(1) =G(1,10)¥(1o) (1.6)

is the state at 7. For time independent H an operator solution of (1.3) can
immediately be written down:

iH(t—-to)J (1.7)

G(r,zo)=0(1—to)eip[— 5

where @ is the step function. Since / is assumed to be time independent we
can, without loss of generality, take 7,=0. Then for >0 we have

G(x,1; y)=<Cx|e” ™|y (1.8)
where the argument 0 has been deleted.
The path integral arises from the fact that
ed=(et/M)V (1.9)
Letting A=it/h yields

G(x; t y)=<x|e"‘(r"' V)/Ng=MT+V)/N_ . e—/\(T+V)/N'y> (1.10)

with the product in the brackets taken N times. Now we make use of a
fundamental fact about the exponential of two operators, namely
A2
e"“”"’/”-e‘”/”e""’/”+0(-I:J—z-) (1.11)

This is proved easily enough,* and in a power series expansion the
coefficient of the A2/N? term is

4=3[v.T]

In subsequent manipulations we assume that the O(1/N?) term is well
behaved, that it stays bounded when applied to states, and so on. For
reasonable potentials this assumption is justified; more is said on this topic
in the appendix.

*An expansion is conveniently generated by looking at derivatives of exp(AT/N)exp(—A(T
+V)/N)exp(AV/N).
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What we are now aiming for is to replace the term
[e—A(T+ V)/N]N= [ e—AT/Ne—AV/N+O(l/N2)]N (1.12)
by the term
[ e=AT/Ng=AV/N]N (1.13)

For real numbers (rather than operators) this replacement is a reflection of
a fundamental fact about the exponential. The expression

(1+=22)
n

converges to e* despite the presence of y, so long as y,—0 as n—co. (A
proof of this assertion can be had by taking large enough n that |y, | <8
and by using the bound

e n -+ n n
(l+x_.§_) <(1+&) <(1+.’2§)
n n n

and assuming » large enough that [(x—8)/n|<1.)
For operators a bit of care is required, and the trick is to express the
difference of (1.12) and (1.13) in a peculiar way:

(e—)‘T/Ne—)\V/N)N__ (e—x(r-r V)/N)N
= [ e~ AT/Ng=AV/N _ o= NT+ V)/N](e—A(T-o» V)/N)N—l
+e—AT/Ne—AV/N[e—xr/Ne—w/N_e-x(T+ V)/N]e—A(T+V)(N—2)/N

o s +(e-—AT/Ne~)\V/N‘)N_l[e—AT/Ne“)\V/N_e-NT*'V)/N] (1.14)

Equation 1.14 is an identity. It contains N terms, each of which has the
factor exp(—AT/N)exp(—AV/N)—exp(—A(T+ V)/N), which by (1.11)
is of order 1/N?. Hence in the limit the difference is zero. (In an appendix
mention is made of various finer points-in the estimate.)

We have therefore justified the replacement of (1.10) by

G(x,t;y)= lim {(x|(e " T/Ne=2/N)¥| ) (1.15)
Nox

In effect we have given a heuristic proof of the Trotter product formula.
From here, getting the path integral is just a few easy steps. The identity
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operator, in the form

fdlexj><xj’» Jj=1.,N-1 (1.16)

is inserted between each term in the product in (1.15), yielding
N—I
G(x,t:y)= A}‘_{“w fdxl' o de—le_Io Xy 1| €T N AN x5
(1.17)

(for convenience we have taken y=x,, x=x,). The multiplication opera-
tor V is diagonal in coordinate space so that

AV(xj))

exp(—%)lxj>=|xj>exp(— N (1.18)

Next we require coordinate space matrix elements of exp(—AT/N) (be-
tween states (77| and |£), say), and to obtain these we insert a complete set
of momentum states

i= [lp><ol  with  (ple) =@an) Vexp( - 2E)  (119)
This gives
Cale M 1E = [dpnle ™| < pled

_ 2:,;,[ dpe—#"/2mNgip(n=0)/h (1.20)
A/

This is our first Gaussian integral of the book, but far from the last. The

general formula is .
20 e_ayl ””dy==] /% eb2/4a (1_21)
— 00

J

Using (1.21), (1.20) becomes

(nle M/N|E) = 2:,1;2 g~ mMn—8 /2 (1.22)




