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P.reface.

The primary purpose of this book is to teach teshnique, and we have
emphasized method rather than generality. Many oi the ideas we shall
introduce, from subharmonicity and maximal functions to Littlewood-
Paley integrals, Carleson measures, and stopping time constructions, extend
naturally to Euclidean space and beyond: but for unity and simplicity we
have limited their discussion to one dimension. Some of these ideas are
explored more fully in the books of Stein [1970] and Stein and Weiss [1971].

Our secondary purpose is to give a self-contained view of the contem-
porary theory of bounded analytic functions on the unit disc. To do that
we must treat in detail certain notions, such as conformal invariance, the
subharmonicity of log|/ |, dual extremal problems, and, especially, Blaschke
products, which do not yet generalize well from their classical setting.
Readers interested in higher dimensions or in multiply connected domains
are only advised that the proofs in the text most resisting generalization are
those relying on Blaschke products or dual extremal problems. Freeing
certain single-variable proofs from these notions is tantamount to solving
some of today’s most difficult problems on the unit ball of C”.

On the other hand, readers patient with one complex variable will be
rewarded with a theory richer in texture. For example, a basic question about
the conjugation operator leads to functions of bounded mean oscillation,
which leads to Carleson measures, and in turn, via Blaschke products or
duality, to interpolating sequences and the corona theorem. Only the last
link of the chain does not generalize. The proof of the H'-BMO duality and
the construction behind the corona theorem, both amenable to higher
dimensions, merge to yield a remarkable characterization, in terms of
Blaschke products, of the closed algebras between H* and L®.

This book presents a particular viewpoint, both in method and material;
it is no encyclopedia. Some topics, such as interpolation problems and the
arguments behind the corona theorem, have been pursued at length, while
other topics, such as the applications of Banach algebra theory and the vast
interaction between H® and operator theory, have been minimized. (For the
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Xl PREFACE

connections with operator theory, we recommend the excellent works of
Douglas [1972] and of Sarason [1979].) Whenever possible we have used
conformal invariance and real variables techniques. Over the past twenty
years, the renewed interest in H* has been prompted largely by functional
analytic questions, but I believe that solving some of the harder problems
now facing the subject requires returning to the disc or the circle and for-
mulating more constructive arguments.

Prerequisites for this book are basic courses in real and complex analysis;
the first eleven chapters of Rudin’s textbook [1974] should be sufficient. In
Chapter I we present some additional background not usually found in
elementary graduate courses. Chapters I1-V form an introduction to Hardy
space theory, through conjugate functions, dual extremal problems, and some
of the uniform algebra aspects of H*. We have based the theory on maximal
functions and on subharmonicity. (For different approaches, see the books
of Hoffman [1962a] and Duren [1970].) Chapters VI-X develop the ideas
surrounding the John-Nirenberg theorem, the geometry of interpolating
sequences, and the corona theorem. People already familiar with the field
will notice that these chapters largely grew out of two papers by Carleson
[1958, 1962a]. Much of the material in the last five chapters has not
appeared in monograph form before. The book is self-contained, and the
first half is basically a preparation for the second half. However, the early
sections of Chapters VI-VIII contain essential parts of today’s classical H”
theory, while a few specialized items have infiltrated Chapter IV. The notes
by Koosis [ 1980] provide a more elementary and less intense survey of some
of the topics we have considered.

Results are numbered lexicographically within each chapter, so that
“Theorem 1.3 is the third item of Section 1 of the same chapter, whereas
“Theorem 1.3 of Chapter I or “Theorem I.1.3" is in Section 1 of Chapter 1.
Independently, the same convention is used to number formulas, such as
*(1.10) of Chapter 1I1.”

There are 31 figures in the text. Understand the figures and you undustand
the book.

Each chapter ends with some bibliographical notes and a section called
“* Exercises and Further Results.”” Some exercises are intended for beginners,
while others, the ** further results,” are theorems not in the text. They usually
include references, which serve also to suggest that they may not be elemen-
tary. Sometimes extensive hints have been given, and occasionally an exer-
cise with thorough hints is referred to later in the text. Especially satisfying
exercises have been marked with one, two, or three stars .
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Preliminaries

As a preparation, we discuss three topics from elementary real or complex
analysis which will be used throughout this book.

The first topic is-the invariant form of Schwarz’s lemma. It gives rise to the
pseudohyperbolic metric, which is an appropriate metric for the study of
bounded analytic functions. To illustrate the power of the Schwarz lemma,
we prove Pick’s theorem on the finite interpolation problem )

f.(zj)zwj, j= 1,2’___,,,1,

with | f(z)['< 1.

The second topic is from real analysis. It is the circle of ideas relating
Poisson integrals to maximal functions. :

The chapter ends with a brief introduction to subharmonic functions and
harmonic majorants, our third topic.

1. Schwarz’s Lemma . :

Let D be the unit disc {z: |z| < 1} in the complex plane and let # denote
the set of analytic functions from D into D. Thus | f(z)| < 1 if fe 8. The
simple but surprisingly powerful Schwarz lemma is this:

Lemma 1.1. Iff(z) € &, and if f(0) = 0, then
' [f@l <z, z#0,
1) < 1.
Equality holds in (1.1) at some point z if and only if f (z) = €*°z, @ areal constant.

(1.1)

The proof consists in observing that the analytic function g(z) = f(z)/z
satisfies |g| < 1 by virtue of the maximum principle
~ We shall use the invariant form of Schwarz’s lemma due to Pick. A Mdbius
transformation is a conformal self-map of the unit disc. Every Maobius



2 . PRELIMINARIES Chap. 1

transformation can be written as
PR ARl
#(z) = * ——
with ¢ real and |z,| < 1. With this notation we have displayed z, = t~'(0).

Lemma 1.2. Iff(z) € &, then

| ) Pl ]

I3 < N Ak B
a2 1 =FCI@l = |1 - %z # %o
and

o rer

e P e ol -
Equality holds at some point z if and only if f(z) is a Mébius transformation.

The proof is the same as the proof of Schwarz’s lemma if we regard (z)
as the independent variable and

1) o)
1= f(z0)/(2)

as the analytic function. Letting z tend to z, in (1.2) gives (1.3) at z = z,, an
arbitrary point of D.
The pseudohyperbolic distance on D is defined by

zZ =W

Pz, w) =

— wz |

Lemma 1.2 says that analytic mappings from D to D are Lipschitz continuous
in the pseudohyperbolic distance:

P(f () f(W) < p(z, w).

The lemma also says that the distance p(z, w) is invariant under Mobius
transformations:

Pz, w) = p(1(2), T(w)).
We write K(z,. r) for the noncuclidean disc
K(zg.1) =4z p(z, 20) < r}, Q== r < ],

Since the family # is invariant under the M®obius transformations, the
study of the restrictions to K(z,, r) of functions in 4 is the same as the study
of their restrictions to K(0, r) = {|w| < r}. In such a study, however, we
must give K(zq, r) the coordinate function w = 1©(z) = (z — zo)1 — Zy2).



Sect. | : SCHWARZ'S LEMMA 3.

i

Forexample, the set of derivatives of functions in % do not form a conformally
invariant family, but the expression

(14) 1S@I0 = 1zP)
is conformally invariant. The proof of this fact uses the important identity

(1= 2P = 2P

Z— 24 g 2 ’
Hoanp = (I = 1zI)17),

(1.5). 1=

which is (1.3) with equ'.alily for f(z) = t(z). Hence if f(z) = g(1(z)) = g(w),
then g

/@I = [2P) = lgWIT@IA = |21%) = [g(mI1 = |w]?)

and this is what is meant by the invariance of (1.4).
The noneuclidean disc K(z,, r), 0 < r < 1, is the inverse image of the disc
|w] < r under

w = T(z) = < —_le.
l —Z,2
Consequently K(zq, r) is also a euclidean disc A(¢, R) = {z:|z — ¢| < R},
and as such it has center
1 —r?

(16) (om i’:'—ri—l“z—o? 20
and radius

1 ‘ = l:() IZ
2.7 R = 10
i%.2) " = r?lzo)?

These can be found by direct calculation, but we shall derive them geometri-
cally. The straight line through 0 and z,, is invariant under t, so that ¢K(z,, r)
= 1~ !(]w| = r) is a circle orthogonal to this line. A diameter of K(z. r) is
therefore the inverse image of the segment [—rzo/|zol, ¥zo/lzol]. Since
z = (w + zo)/(1 + Z,w), this diameter is the segment

(1.8) [ B] = [Izol Terszo |zel +r zo]

1L —rlzollzol’ T+ rlzol lzol]

The endpoints of (1.8) are the points of K(zq,r) of largest and smallest
modulus. Thus ¢ = (« + f)/2 and R = (|| — |%])/2 and (1.6) and (1.7)
hold. Note that if r is fixed and if |zy| — 1, then the euclidean radius of
. K(zq, r) is asymptotic to 1 — |z,].
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Corollary 1.3. Iff(z) € A, then

1/ ©)] +z|
(19) e S - F et

Proof. By Lemma 1.2, p(f(z), f(0)) < |z[, so that f(z) € K(f(0), |z[). The
bound on | f(z)| then follows from (1.8). Equality can hold in (1.9) only if f is
a Mobius transformation and arg z = arg f(0) when f(0) # 0. [

The pseudohyperbolic distance is a metric on D. The triangle inequality
for p follows from

Lemma 1.4. For any three points z,, z,, z, in D,

p(zo, 23) + P(Zz’ 2_1)
I + p(zo, éz)P(Zz_:__Zn)

p(zq, 23) — p(23,21)
1 — p(z, 22)P(22,2;)

(1.10) < pz0,21) <

Proof. We can suppose z, = 0 because p is invariant. Then (1.10) become

|zol + |24
T 1+ |z0ll2,]

|zo] = |24]
1 —|zollzgl —

Zy — Zo

(1.11)

1 - 202;

If |z,| = r, then z = (z; — zo)/(1 — Zyz,) lies on the boundary of the nor
euclidean disc K(—zg, r). On this disc |z| lies between the moduli of tF
endpoints of the segment (1.8). That proves (1.11). Of course (1.10) an
especially (1.11) are easy to verify directly. [J

Every Mobius transformation w(z) sending z, to w, can be written

LT R
: 1 — Wow I-#+53
Differentiation then gives
(L12) P b ol
3 wiz e
' ‘ L= |Zo|2

This identity we have already encountered as (1.3) with equality. By (1.12)
the expression

2|dz|
(1.13) . ds = 1——IZ|7
is a conformal invariant of the disc. We can use (1.13) to define the hyperbolic
length of a rectifiable arc y in D as

2|dz|
y k= |2|2'
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We can then define the Poincaré metric y(z,, z,) as the infimum of the hyper-
bolic lengths of the arcs in D joining z, to z,. The distance y(z,, z,) is then
conformally invariant. If z, = 0, z, = r > 0, it is not difficult to sce that

Todx 1 4r
el | e e BT
lp(zl 22) fo l ) lez Og 1 —r

Since any pair of points z; and z, can be mapped to 0 and p(zy, z,) =
[(z; — z1)/(1 — Z,z;,)]|,respectively, byaMoblus transformation, we therefore
have :
L + p(zy, 25)
2;,2;) = log —————=
Vot 22 = o et

A calculation then gives

tanh l|b(zla ZZ)
2

p(‘- 1s "'2)

Moreover; becausc the shortest path from 0 to ris the radius, the geodesics, or
paths of shortest distance, in the Poincaré metric consist of the images of
the diameter under all Mdbius transformations. These are the diameters of
D and the circular arcs in D orthogonal to éD. If these arcs are called lines, we
have a model of the hyperbolic geometry of Lobachevsky.

In this book we shall work with the pseudohyperbolic metric g rather
than with ¥, although the geodesics are often lurking in our intuition.

Hyperbolic geometry is somewhat simpler in the upper half plane # =
fz=x+iy:y >0} InH

Al
zZy — 2,

B p(‘-ls z;) =

and the element of hyperbolic arc length is

dz
ds = I——l

v
Geodesics are vertical lines and circles orthogonal to the real axis. The
conformal self-maps of # that fix the point at oo have a very simple form:

1z) = az + xq, a>0, xoeR.
Horizontal lines {y = y,} can be mapped to one another by these self-maps
of #. This is not the case in D with the circles {|z| = r} in D. In # any two
squares
{xo <X<xo+hh<y<2h}
are congruent in the noneuclidean geometry. The corresponding congruent

figures in D are more complicated. For these and for other reasons, # is
often the more convenient domain for many problems.
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2. Pick’s Theorem

A finite Blaschke product is a function of the form

B(z) = ¢ n

Zaf il
l—zz |21

The function B has the properties

(i) B iscontinuous across ¢D,
(i1) |B| = 1on D, and
(iii) B has finitely many zeros in D.

These properties determine B up to a constant factor of modulus one. Indeed,
ifan analytic function f(z) has (i)-(iii), and if B(z) is the finite Blaschke product
with the same zeros, then by the maximum principle, | f/B| < | and | B/f |
< 1, on D, and so f/B is constant. The degree of B is its number of zeros. A
Blaschke product of degree 0 is a constant function of absolute value 1.

Theorem 2.1 (Carathéodory). Iff(z) e B, then there is a sequence {B,} of
Jinite Blaschke products that converges to f(z) pointwise on D

Proof. Write
f2)=co +cqz +5+-,

By induction, we shall find a Blaschke product of degree at most » whose
first n coefficients match those of /'

By=cot+c1z4 -+ 2" +d, " +
That will prove the theorem. Since |¢,| < 1, we can take

Z=t Cq
1 4+ Coz

0=

If [¢y| = 1, then By, = ¢, is a Blaschke product ofdegree (0. Suppose that for
each g € # we have constructed B, _(z). Set

1 f=£(0)

T 1= J0f
and let B,, . be a Blaschke product of degree at most n — 1 such that
g— B,_, has n — 1 zeros at 0. Then 2 — zB,_, has n zeros at z = 0. Set

2B,-,(2) +/(0)
1+ f(0)zB,(z)

B,,(Z) =



