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Consultant Editor’s Note

The MTP International Review of Science is designed to provide a compre-
hensive, critical and continuing survey of progress in research. The difficult
problem of keeping up with advances on a reasonably broad front makes the
idea of the Review especially appealing, and I was grateful to be given the
opportunity of helping to plan it.

This particular 13-volume section is concerned with Physical Chemistry,
Chemical Crystallography and Analytical Chemistry. The subdivision of
Physical Chemistry adopted is not completely conventional, but it has been
designed to reflect current research trends and it is hoped that it will appeal
to the reader. Each volume has been edited by a distinguished chemist and

_has been written by a team of authoritative scientists. Each author has assessed
and interpreted research progress in a specialised topic in terms of his own
experience. I believe that their efforts have produced very useful and timely
accounts of progress in these branches of chentistry, and that the volumes

~ will make a valuable contribution towards the solution of our problem of
keeping abreast of progress in research.

It is my pleasure to thank all those who have collaborated in making this
venture possible — the volume editors, the chapter authors and the publishers.

Cambridge A. D. Buckingham



Preface

The principal change which has come about in theoretical chemistry during
the last generation—say from about 1930—is that the macroscopic, thermo-
dynamic treatment of systems has given place to their microscopic treatment
in terms of statistical and quantum mechanics.

This change was delayed by about 20 years in electrochemistry. One reason
was the dominance of Nernst’s theory of electrochemical cells—a bastion
of the chemical texts of the 1930s and 1940s. The slow weaning had sociological
consequences: it contributed to delays in the development of the direct
conversion of chemical to electrical energy by electrochemical means (thence

‘to pollution-free transportation).

Meanwhile, there has been a great trend among electrochemical researchers
to turn towards the study of electrode processes, and solution aspects have
becom: more a part of the physical chemistry of solutions.

During the last few years, research in electrode processes has brought
attention to the interdisciplinary aspects of the field, while the environmenta!
needs of the near future have been a stimulus to a broad development of
the electrochemical principles which underlie surface aspects of chemistry,
engineering, metallurgy, and biology.

This present situation is the background for choice of the chapters for this
first volume on electrochemistry. One chapter concerns very fundamental
theory, two describe the basic principles of powerful tools, and three consist
of electrochemical discussions of processes in metallurgy, materials science,
and biology.

Pennsylvania J. O’M. Bockris
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1.1 INTRODUCTION

The object of this paper is to give a critical discussion of the present state of
the theory of charge transfer at the electrode—electrolyte interface.

1.2 COURSE OFi DEVELOPMENT OF THE QUANTUM THEORY
OF ELECTRODE PROCESSES

Two distinct paths in the development of the theory of electrode processes
are apparent. These may be called the ‘thermal’ and ‘electrostatic’ (dielectric
continuum) models according to the type of activation involved. deal

In the thermal view, the vibrational quantum level of the reactant is con-
sidered to be distributed in response to the thermal and electrostatic (e.g.
ion—dipole) interactions of the ion with the surrounding solvent. In the
electrostatic model, the energy changes in the ion leading to electron transfer
arise from long-range electrostatic interaction. In practice, the solutions to
the equations of the theory are worked out in continuum terms. A brief
outline of the development of each of these theories follows.

1.21 Development of the thermal model

At an early stage in the development of the quantum theory, Gurney'
indicated the essential condition for radiationless quantum mechanical
electron transfer between metal and solution. An essential aspect of this
mechanism is a quantum state in the electron-accepting or -donating ion
with the same total energy as that of the typical electron (or hole) in the
electrode. This energy corrcsponds closely to the Fermi level of the metal.
The general concept is shown in Figure 1.1. The total energy of the ground
electronic state of the proton depends not only upon the vibrational state
of the H,O—H" bonds but is affected by the interaction of the H;O* ion
with its environment, i.e. the solvation energy of the hydroxonium ion. Part
of this energy is continuum in character so that the total energy of the
electron quantum state in the ion has continuum levels.

In the Gurney model, the product formed by the transfer of an electron toa
proton was considered to be a hydrogen atom in water rather than a hydrogen
atom bonded to the electrode. Calculation of the heat of activation on this
basis gave values that were too high®. For this (trivial) reason, Gurney’s
theory was not further considered for about three decades, and was widely
misunderstood as it was assumed® * to involve slow electron transfer as a rate-
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QUANTUM THEORY FOR ELECTRONIC CHARGE TRANSFER 5

determining step, whereas in fact it comprises slow rearrangement of the
-solvation shell (i.e. of the bonds in the solvated H;O" ion) with quantum
mechanical electron transfer.

Butler* modified Gurney’s mechanism to take into account bonding*
(chemisorption) of the product hydrogen atoms (in H;O* +e— H,,,) to the
metal (Figure 1.2). He considered the potential energy curve for the initial
state to be represented by a Morse curve for the H*—H,O bond, the
solvation energy of the H;O" ion being considered part of the potential
energy of the ground state of the proton. The potential energy curve for the
final state was taken to be represented by the Morse curve for the metal
~hydrogen bond together with a H—H,0 repulslve term.

Parsons and Bockris® developed Butler’s extension of the Gurney theory,
with the assumption that the probability of electron transfer to the proton
was unity at the crossing point at the col of the potential energy surfaces (cf.
Butler!). They were able to separate, from the electrochemical potentials of
the metal-ion system, a numerical value corresponding to the charge-
dependent part of the potential difference. They made a rough numerical
estimate of the rate of the proton discharge reaction under adiabatic electron
_transfer conditions, and showed that the modified Gurney mechanism was
consistent with the measured rates so long as the M—H bond strength was
at least 50 kcal mol ™%

Parsons and Bockrls’ in their calculations of one-dimensional potential-
energy profiles, used Morse curves for reactants and products. It is important
to note that they used the total energy of H;O" (i.e. including the energy of
solvation of HyO" by the surrounding solvent) to calculate the potential
energy-distance: relations by which the activational rearrangement of the
solvent was determined.

The samrz kind of model was used in several applications by Conway
and Bockris*® In each case, the mechanism always implicitly involves
adiabatic quantum mechanical electron transfer, and consists of a bond
rearrangement, with solvent rearrangement (represented by the variation of
a part of the heat of solvationt of the discharging ion) being involved as
some portion of the activation energy.

Although one-dimensional calculations of this type were relatively
crude, they allowed the effect of changes in quantities (for example, in metal
deposition, the bonding of an ion to a planar site in a metal, or to a kink site)

*Horiuti and Polanyi® had (previously) pointed out the effect upon the reaction rate of the
metal-hydrogen bond. Their paper did not consider the quantum mechanical aspects of electron
transfer, as did the prior paper of Gurney' or the immediately subsequent paper of Butler*.
Butler's model tock both Gurneyian quantum mechanical transfer, and the effect of M—H
bond strength changes into account. We do not think that a primary place should be given (in
the historical development) to Horiuti and Polanyi’s® paper, because its level of sophistication
was so much less than those of Gurney' and of Butler*,

1The heat of solvation considered was the total interaction energy of the ion with the solvent,
i.e. the ion-dipole part, together with the continuum Born energy. As the ion oscillates within
its solvation shell, some of the ion—dipole interaction is distance-dependent and hence varies
with the movement of the central ion. The energies concerned with some of these movements,
for example, that of the ion with the second layer of water molecules, are as low as of the order
of kT. Consequently, the potential-energy distance curve for the energy of the ion has a con-
tinuum character.
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QUANTUM THEORY FOR ELECTRONIC CHARGE TRANSFER 7

to be roughly calculated. In this way, predictions were obtained concerning
the likelihood of alternative paths for certain electrode reactions®. In par-
ticular, this model was applied to metal deposition'®, in which activation
to the electron transfer condition was regarded as being due to thermal
perturbation of the electrostatic ion—dipole interaction (cf. Figure 1.3).

At about the same time that these calculations were being published,
Gerischer''™ applied the Gurney' thermal activation model to redox reac-
tions in a detailed way. He extended the considerations to the electron
distribution within the substrate, and developed the quantum theory of
electron transfer between semi-conductors and ions in solution.

These developments of Gurney’s model had not taken into account one
important factor, namely, the quantum mechanical properties of the dis-
charging proton itself. However, in a treatment not connected to the develop-
ment of general electrode kinetic theory, the quantum properties of protons
at interfaces had been considered at an early stage, by Bawn and Ogden'4,

OHP
Filled
energy levels
in metal
Eg--- Vibrationally
excited
H,0°
. Ground state
o Solution of Hy0*
Electrode Outer Helmholtz
plane
{a) (b)

Figure 1.4 The Bockris and Matthews proton tunneiling model: (a) the model, (b) the
barrier for proton tunnelling (Eckart barrier)

who calculated the rate of transition of a proton and a deuterium ion across
an Eckart barrier (c.f. Bernal and Fowler®', Conway, Bockris and Linton®,
who considered quantum mechanical effects in homogeneous systems).
Later, Christov'*'® developed a particularly detailed picture of the quantum
mechanical transfer of protons, in several mechanistic interpretations of
data on separation factors. Conway'? showed that given certain assumptions
concerning barrier width, proton tunnelling in the hydrogen discharge
reaction could affect markedly the Tafel slope and give a potential-depen-
dence of separation factor.

Some detailed calculations of the quantum mechanics of electrode
reactions involving protons were carried out by Bockris and Matthews?.
They calculated the effect of quantum mechanical penetratlon of protons
through the classical transfer barrier from the H,O" ion (interacting with
the surrounding water molecules) to the electrode. Neutralisation was
assumed to take place upon penetration of the barrier (Figure 1.4).

The Bockris and Matthews model was therefore fully quantum mechanical



