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1 Introduction

The aim of this thesis is the analysis and understanding of n-plectic (also called multisymplectic)
manifolds, their observables and their symmetries.

The development of a geometric theory of n-plectic manifolds naturally starts with the classical
case of symplectic manifolds, In that setting one considers a manifold M equipped with a non-
degenerate closed two-form w. This two-form relates C*(M), the space of smooth functions on
M with the vector fields on M. This relation induces a Lie algebra structure on C*(M), which,
endowed with this structure, is called the Lie algebra of observables of M. The infinitesimal
version ¢ of a symplectic group action on (M, w) can often be linearly lifted to this Lie algebra.
Such group actions are called weakly Hamiltonian and are the basis of what might be called “mo-
mentum geometry”, which is also of great interest for physics. The existence of an equivariant
moment map is obstructed by a certain cohomology class.

In the general n-plectic case we consider a manifold M with a closed, non-degenerate n+1-form.
Unlike the symplectic (1-plectic) case, the non-degeneracy of w only guarantees injectiveness of
the map v — (,w but no surjectiveness. Also the space of observables carries a more general
algebraic structure which turns it into a “Lie n-algebra”, which is a Lie algebra only whenn = 1.

Lie n-algebras are a special case of L.-algebras, whose study constitutes the first chapter of this
thesis. Lie n-algebras from n-plectic manifolds are then introduced in Chapter two. The general-
ization of the notion of a (co-)moment map is the main theme of the third chapter, culminating in
an explicit calculation of the obstruction classes to strongly Hamiltonian n-plectic group actions.

The thesis is structured in the following way:

e Sections 1.1 and 1.2 develop twe possible perspectives on L..-algebras. The earlier one de-
scribes an L..-algebra as a Z-graded vector space, with a family of brackets (/|1 < k} satis-
fying an infinite series of multi-bracket identites. The latter standpoint views an L..-algebra
as a graded vector space V endowed with a degree one coderivation D : §*(sV) — S*(sV),
which squares to zero, where S*(sV) denotes the cofree graded commutative coalgebra of
the vector space sV, where sV is V with degrees shifted by 1. The main result of these sec-
tions, the equivalence of these descriptions (Theorem 2.14) is based on the proof sketched
in [7], but we work out the full details of the proof here.

e Section 1.3 then discusses the right notion of morphisms of L.-algebras. Though L.-
morphisms more tangible from the coalgebra standpoint, the multi-bracket formulation
is more practical for calculations. Hence, the main result of this section is the multi-
bracket formulation of L.-morphisms (Lemma 2.18). It is based on the calculations made
in Appendix A of [5] and results in a formula already stated in in [1], but without proof.
We giva a detailed proof and we are also more explicit about the precise range of the
summations involved.



Section 1.4 gives an introduction to the representation theory of L.-algebras according to
[6]. It presents two perspectives on representations: via L.-morphisms into the endomor-
phism space of a differential graded vector space and via L.,-modules. The equivalence of
both approaches is only quoted from [6] in this thesis.

Section 1.5 then reduces the “heavy machinery” developed in the preceeding sections to
the case of gounded Lie m-algebras, which are of special interest as they include the L..-
algebras formed by the observables of a multisymplectic manifold. This section mostly
reproduces results from [5], where the property “to be grounded™ is referred to as “having
Property (P)”.

Section 2.1 introduces the notion of n-plectic (or multisymplectic) manifolds and derives
their basic properties in accordance with [11]. The discussion of the pre-n-plectic case
mostly relies on [5]. The Lie n-algebra of observables is described for both cases.

Sections 3.1 and 3.2 develop the theory of Hamiltonian group actions on n-plectic mani-
folds, guided by the classical case described e.g. in [9]. The (homotopy) co-moment map
which is the basic object of our discussions was first introduced in [5]. The main results
of these sections are Lemma 4.7, which describes the obstruction for an n-plectic action to
be weakly Hamiltonian and Theorem 4.13, the which gives a cohomological description
of the obstruction for a weakly Hamiltonian action to be strongly Hamiltonian. The latter
is a refinement of Theorem 9.7 in [5]. Furthermore we show that the first resp. the last
component of a strong homotopy co-moment map yields a covariant multimoment map in
the sense of [3] resp. a multi-moment map in the sense of [8].



2 L.-algebras

Let K denote here a fixed ground field of characteristic 0. All vector spaces, linear maps and
tensor products will be defined with respect to/taken over this field, unless we explicitly state
otherwise. A good overview of the subject of L-algebras is provided in the n-lab ([12]).

2.1 Generalizing differential graded Lie algebras

In this section we will define L.-algebras as the generalization of Lie algebras. For doing so
let us first review the notion of a Lie algebra: A Lie algebra is a vector space L with a skew-
symmetric bilinear map [-,-] : L x L — L satisfying the Jacobi identity:

[[x1, x2), x3] = [[x1. x3], 2] + [[x2, 23], 1] = 0 (1)

This can be rewritten in the following way, where P = {({33).(133).(}3)1 c Ss:

> s8n@) o), Xo): ¥or] = 0.
aepP

The set P consists precisely of those permutations, which move one element to the last position,
without distorting the inner order of the others. As we will deal with identities of multi-brackets
soon, we will have to generalize this notion of “moving one element out of three to the end”
to “moving ¢ elements out of p + ¢ to the end”. The permutations doing that are exactly the
(p, g)-unshuffles.

Definition 2.1. A permutation o € S ., is a (p, g)-unshuffle if and only if (i) < (i + 1) for
i # p. We denote the set of of (p, g)-unshuffles by ush(p,q) C S p.q.

The condition in the above definition guarantees that the first p and the last g elements stay in the
same internal order. These permutations are called unshuffies, because their inverses correspond
to shuffling a deck of p cards into a deck of ¢ cards.

Let us now turn to the graded context. First we introduce a grading on our vector space: We
set L = @ iz Li» where L; ist the vector subspace of elements of degree i. We will write |x| = i if
x € L;. ALie structure [+, -] on such a vector space L should satisfy the following three conditions:

e [L;,L;] C Li; (the bracket respects the grading)

o [x;,x;] = —(=1)Fl[x;, x,] for all homogenous x;, x, € L (the bracket is graded skew-
symmetric)

o (=DM Lo, 23] + (=1 ey, (a3, 2001+ (=1)P2P s, 10, x2]] = 0 for all homoge-
nous elements xi, X, x3 € L (the graded Jacobi identity holds)

If we try to bring the graded Jacobi identity into form of equation (1), we get:
[Fx1s 21, x3] = (=1 Ly, s, 3] + (=D, 2], 201 = 0.
So [[Xe1)s Xe2)]s X(3y] gets an additional sign for every transposition of two odd elements. This

leads us to the definition of the Koszul sign € of a permutation o~ acting on elements x, ..., X, € L.
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Definition 2.2. Let o € §, be a permutation acting on elements vy, ..., v, of a Z-graded vector
space V. Let (vj,,...,v;,) be the ordered sublist of vy, ..., v, including exactly the odd elements.
Then there is a (unique) permutation & € S such that (v, ..., Vi) is the ordered sublist of
Ver(1)s - Verny inCluding exactly the odd elements. Then the Koszul sign of o acting on vy, ..., v, is
defined by

(T, Vi, vy V) 1= 5gN(T).
Remark 2.3. One can check that € is well-behaved in the sense that
(T 0T, Vi, oy Vi) = €(T  Vir(1)s eoos Vortty) * €(C Vi oo Vi),
and that for a transposition 7; interchanging v; and v;,; it holds that €(tj, v, ..., v,) = (= 1)FVetl,

Thus, the graded Jacobi identity can be written in the following way:

Z sgn(a)e(a, xi, X2, X3)[[Xe(1)s X)) Xo)] = 0 (2)

reush(2.1)

Next we consider a graded vector space with a differential d : L — L satisfying d(L;) C L,
and ¢ = 0. This turns L into a differential graded vector space or, in other words, into a chain
complex':

Lia Ly —2 et} —

Adopting the standard language, used e.g. for de Rham cohomology, we call x € L closed if
dx = d(x) = 0 and exact if x = dy for some y € L. In the latter case y is called a potential for x.

A differential graded vector space (L, d) together with a graded Lie bracket [-,-] on L is called a
differential graded Lie algebra if the differential derives the bracket i.e. satisfies the following
graded Leibniz rule (for x;, x, € L):

dlxy, %3] = [d(x)), xa] = (=D)™[x;, d(x2)].
This can be rewritten as:
dlx1,x2] = [d(x1), 2] = (=)™ [d(x5), x,].

The latter equation can also be written in terms of signed sums of unshuffles. In fact, it is
equivalent to:

> sen(@)ee v dls el = Y sgn(@)el xi, Ao o))

oeush(2.0) oeush(l.1)

"From the perspective of homological algebra it would be a cochain complex, as the differential has positive
degree. The closed elements would be called cocycles and the exact elements coboundaries.
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If we furthermore inter‘f)ret the differential as a unary bracket and write x — [x] instead of
x = d(x) we get:

sgn(o)e(a, xy, x)[[Xoy, Xe@]] = Z sgn(o)e(o, x, X[ Xe(1)]s Xo2)] (3)
orensh(2.0) oeush(1.1)

Even the condition d* = 0 can be written as [[x]] = 0, or bringing it into the form of the other
equations :

sgn(o)e(o, x)[[xe ] =0 (4)

aeush(1.0)

We have now learned how to describe a differential graded Lie algebra as a graded vector space
L with a unary bracket [:] of degree one and a binary bracket [-, -] of degree 0, which satisfy the
equations (2), (3) and (4). These three equations are special cases of the below equation (5).
We will now generalize the notion of differential graded Lie algebra to obtain a definition of an
L..-algebra.

Definition 2.4. An L.-algebra (or Lie-co-algebra) is a graded vector space L = @,g L; together
with a family of graded skew-symmetric multilinear maps {/; : X' L — L|i € N} such that /; has
degree 2—i and the following identity holds (for all n € N):

Z (-1 )'UH, Z .S‘gn(O')G(O'. Xiswies Xa) l,(I,(x,,“-,. ooy Xoti))s Xartis 1)sves Xorgm)) = 0 (5)

i+j=n+1 creush(in—i)
To keep the definition transparent despite the use of (possibly infinitely'many) multi-brackets we

write /, for the n-ary bracket and give a brief overview of the multilinear algebra surpressed in
the definition.

e X' L is the cross product of i copies of L.

o A multi-linear map /; : X' L — L is a map linear in every component. One could equiva-
lently define /; as a linear map from &)’ L to L. Here X' L is the i-fold tensor product of
the graded vector space L.

e Demanding /; to have degree 2 — i means that /; restricted to Ly, X Ly, X ... X L, must map
intO Ly 4kss.. +k42-i- Turning ®' L into a graded vector space by defining the degree of

X1 ®...®x; as ZLI |x¢|, this translates to saying that /; : ®' L — Lis alinear map of degree
2 —1.

e The maps /; being (graded) skew-symmetric means that for all - € §; the identity
li(x1, s i) = sgR(C)E(T, X1y ooy Xi(Xir(1)s s Xor(y) hONds. Using the language of multi-
linear algebra this is equvialent to /; : ®' L — L descending to a map /; : E'(L) — L,
where E'(L) is the i-th (graded) exterior power of L.



e The reason why we only sum over the unshuffies is to avoid repetition: If any two per-
mutations o,o” € §, differ by a permutation which only interchanges the first i and
the last n—i elements (i.e. o = too’, where v = (1,,72) € §; X S,; € §,) then
Ll X1y woos Xortin)s Xertis 1y Xam) = £ i(Xo2(1)y - Xo2(i))s Xer(is1)---Xor(my)- Thus, up to sign,
we would add up essentially same elements several times. To avoid that, we need a system
of representatives for §,/(S; X S,-;). That system of representatives is provided by the
Unshuffies. All inner permutations of the first i and last n — i elements are prohibited, as
there is only one way to arrange an i-element (resp. (n — i)-element) subset of {1,...,n} in
a strictly ascending order.

Next, let us take a closer look at the signs involved:

e The first sign in (5) is (=1)“*". It only gives us an additional sign if the number of
elements consumed by brackets is odd for the inner one (/;) and even for the outer one (/;).
If we look at (5) for n = 2 we get equation (3). If not for the (—1)"U*" in our definition this
equation would have an additional sign and the graded Leibniz rule would not be satisfied.

e sgn(or) is the usual sign of the permutation, not depending on the grading. It contributes a
minus sign for every transposition in the permutation.

® (0, xy,.... x;) is the Koszul sign, which is highly dependant on the grading of the elements
permuted. It gives us a factor of -1 for every transposition of two odd elements in the
permutation,

Finally, by direct calculalibn, we can see that this definition indeed provides a generalization of
a (differential graded) Lie algebra:

Example 2.5. A differential graded Lie algebra is precisely an L..-algebra with /; = 0 fori > 2.
Furthermore, a Lie algebra is an L..-algebra where the L is concentrated in degree zero (i.e.
L = Ly).

2.2 L.-algebras as coalgebras with differentials

Having defined L..-algebra objects, we would now like to investigate their structure-preserving
maps. Intuitively one would regard (say degree-zero) linear maps f which conserve the brackets
ie. [[(f(xi), ... f(x) = f(li(xi,....,x;)). Unfortunately this nontion of morphism is not flexible
enough, and from our definition it is not clear what the right notion of more “flexible” maps
would be. In order to advance, we will reformulate our definition in the language of “differential-
graded coalgebras™. First of all we will get rid of the different degrees of the /,. We define the
shift sL to be L with the grading shifted by one i.e. (sL); = L;,,. To keep notation consistent we
denote the multi-brackets by s/; instead of /; if we work with the shifted grading. Then we get

(SEY((SL)k, 5 +evs (SLY;) = Li(Liy41s <o Lige1) © Lipar4tkir142-i = Ligss2 = (SL)ky 4., k41

So (sl;) : X'(sL) — (sL) have degree one independantly of i. Unfortunately the s/; are not
in general skew-symmetric with respect to the new grading. But we can turn the /; into graded
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-
commutative maps by altering the signs.
Recall that a multi-linear map f : X"V — W, where V is a graded vector space and W is any
vector space, is called graded-commutative (or graded-symimetric) if it satisfies

f(ylc -~~v)’n) = 6(0’..)‘1- u-s,Vn)f(.)’rf(I)v ~~-v)’a’(n)) Yoes, (6)
Writing sx € (sL), for an element x € L,,,, we now define I, : X"(sL) — (sL) by
D81, ooy 8Xp) = (= 1)H 0B (LY (X, ooy $Xp)

with @ defined in the following way:

WXy ooy Xp) = A Xy ey Xp) = Z |x;]  whenn is even,

iis odd
ig(l...n}

A(X)yeeen Xp) = QX en X)) = 1 + Z |xi| whenn is odd.

iiseven
i€{l....n}

Lemma 2.6. The maps I, : X"(sL) — sL are graded-symmetric multi-linear maps of degree |
forall n € N.

Proof. The [, are multi-linear by construction and deg(l,) = 1 follows from the discussion above.
The only property, which remains to be checked is the graded symmetry (6). However, it is
enough to check this property for the transpositions {7; | | <i < n} C §,, where 1; interchanges
y; and y;., as these transpositions generate the full symmetric group. So we calculate:

Fa(SX10 ey $) = (= 1)2E ) gL (5xy, oy %) = (= 1)L (31 oy X))

As T; consists of only one transposition we have sgn(t;) = —1 and (1}, x|, ..., x,) = (=1)Wlual,
thus
T8 ey $20) = (= 1) (D)=L ey, X))
= (=) D)= DS (52110 26 0m)
= (- 1 )(1(.\'1 ..... x,.)(_ 1 )(_ 1 )I.\’.‘||Xu||(_] )"(Xr"”’""'xr"m')i,,(s.l}‘.( R erim))'
But the sum a(xy, ..., x,) and @(x;,1), ..., Xr,(m) Only differ by one summand. One of them has the
i i(n) y y
summand |x;| and the other one |x;,|. All the other signs cancel out, so we get:
[iSX1s ooy 525) = (~ DB Y= (o 1y, oy 8gy) = (= D UEDEDE (ot ores i)

= €(Tiy SX1y ooy S (SXr,01y5 o ony SXryimy)-



Remark 2.7. In this proof the constant summand in the definition of « for odd n is not needed.
It will turn out useful later, when we discuss the multi-bracket equation (5).

We can now regard [, as a graded-symmetric linear map from ®"(sL) to sL of degree one.
And, analogously, we can encode the symmetry properties of this linear map by modifying
its domain. This time we need the graded-symmetric powers of (sL), which are denoted by
S"(sL). Analogusly to the preceeding reasoning we can describe [, equivalently as linear maps
I,: 8"(sL) — sL, where §"(-) is defined as follows:

Definition 2.8. Let V be a Z-graded vector space. The k-th (graded) symmetrization operator
Symy : RV — Q" V is defined by

1

Sylﬂk(m ®...® W) = F Z (0, V15 50en 1’k)v‘,-(|) & ... ® Vir(k)-
b oeSk

The Image of S ymy is a vector subspace and called the k-th (graded) symmetric power of V. We

will denote Sym(v) ® ... ® v) by v) @ ... @ vy

The sum of the S"(sL) forms an algebra S*(sL) = ®neh'n S"(sL), the so-called free graded-
commutative algebra on sL. Setting [ : S°(sL) = K — (sL) to be the zero map, we can combine

the i, to a linear map 1:8 *(sL) — sL of degree 1. This map encodes all information of our
L..-algebra except equation (5).

To encode equation (5) we have to change perspectives. Instead of regarding S°(sL) as an alge-
bra we will use its coalgebra structure. The reason for this is that the universal property of an
algebra gives us a way to extend the domain of maps sL — W. What we need here is the dual
property: We want to extend a map W — sL to some map W — §*(sL) (in our case W = S°(sL)
and the map to be extended is /). The most direct way to understand a coalgebra is by dualizing
the diagrams encoding an algebra structure. Let us first recall the definition of a graded algebra
in terms of diagrams:

Definition 2.9. Let A be a graded vector space. A unital associative graded commutative
algebra-structure on A consists of two linear maps of degree zero, a linear multiplication map
m:A®A — A and a unit morphism u : K — A such that the following diagrams commute,
where 7: A® A - A® A is defined by 7(a® b) = (-1)""p ® a:

associativity: left unit law: right unit law: graded commutativity:

ARARA™L, ARA KA A9A AQK-ARA ARA—+~A®A

Iirl®m jm \ lm ‘ \ l,,, \ 1'"
AgarAa a®d-Aa
A A

ARA—"—sA A
“Reversing all arrows™ gives us the definition of a coalgebra:

Definition 2.10. Let C be a graded vector space. A counital coassociative graded cocommuta-
tive coalgebra-structure on C consists of two linear maps of degree zero, a comultiplication map

8



A:C®C — C (also called diagonal) and a counit morphism 7 : C — K such that the following
diagrams commute:

coassociativity: left counit law: right counit law: graded cocommutativity:
c—=2-~CaC c—5cec c—>cacC C
LA IA@id \ ln@id \ 1idm lA\
oA o= 180 N\ o=@l .
CRC——CRCRC Ke®C K®C CRC——C8C

One can turn S*(sL) into a counital coassociative graded cocommutative coalgebra with the
counit 7 = m; given by the projection onto S”(sL) = K and the following diagonal:

n

A(5x] @ ... Q 5Xp) = Z Z €(T, 5X1y vy $Xy) (5X(1) @ oo @ SXiy) ® (SXpr(i41) @ oo O $Xr(my)

=0 oeushiin-=i)

More generally, this construction can be carried out for any graded vector space V. The resulting
coalgebra structure on the graded vector space S*V is then called the cofree graded cocommu-
tative coalgebra of V. For any counital coassociative algebra C a homomorphism ¢ : C — C'is
called a coderivation if the following diagram commutes:

: &

A

A
Ci c agb-d(a)8b+(~1)"ags(b) CeC

Returning to our case, we have a map [:8*(sL) - sL = S'(sL). It can be extended to a degree
1 coderivation D : §*(sL) — S°*(sL) in the following way:

Definition 2.11. Let {‘ be a Z-graded vector space and {/; | i € N} a family of graded skew-
symmetric maps. Let [ : S*(sL) — sL be the above defined map. Then we define the degree-one
derivation D : §*(sL) — §*(sL) by the following formula:

n

D(sx) ©...0 sx,) = Z Z (T, §X1, .0y SXy) (i(sx(,(,) ®..0 sx,ﬂ,—,)) © $Xg(is1) © voi © SXirim)-
i=1 aeushlin—i)

Remark 2.12. As we defined [ summand-wise by the /;, we could instead write

n

D(sx; ©...05x,) = Z Z €(T, 5X1y vues SXp) (i;(sx.nn 0.0 S.\'(rm)) O $Xg(is1) © vvi © SXer(u)s

i=1 oeushin-i)

and check that D indeed is a coderivation. As a concequence of corollary A.2 D is the unique
coderivation satisfying ;D = [.

With this extension done, we can finally reformulate condition (5).

9



Lemma 2.13. In the setting of the last definition the equation

DD N (@)D, X1y Ka) L Eottys s Fotiy s Fetistyers Form) = O

i+j=n+1 oeush(in-i)
implies D? = 0.
Proof.

n

) «
D(sx1 ©® ...® §x,) = D[Z Z €(0, 5X15 20y §Xn) ([,-(sx(,m ®..0 sx(r(,'))) © §Xer(i+1) @ ves © SXer(m)
i=1 oeush(i,n—i)

n
= Z Z €(0r, $X1yveey SXp)D ((i,'(sx(,(l) 9.0 sxg(i))) @ $Xg(i+1) @ ... @ sx(,(,,))

i=1 ceush(in—i)

Next we apply D to a term of length n—i+ 1. For that we will define y{ := i,r(sx(,mo...oA*xlr(,-,)
and y{ | 1= $Xoqn fOr k € {1,...,n —i}. So we have:

D ((i,(sx(,(l, O ... ® $Xg() )) O $Xp(is1) @ ... © sx‘,(,,)) =D(O{ 0.0y 1)
n=i+1

— o o 7.(v o o o
= Z Z €TV s oo Vnin D050y © - @ V7)) © Y511 © vo © Yiioiv-
Jj=1 reush(jn—i+1-j)

As y] is a structurally different term than the other yy we will distinguish between 7 satisfy-
ing (1) = 1 denoted by u(j,n,i) and 7(j + 1) = 1 denoted by u,(j,n,i). Every element in
ush(j,n—i+1-j)isexactly in one of those two subsets. Let us first analyse the case T € ua(j, n, i):

L0y @ - ©Y5(j) © Yejaty @ v @ Youoinny
=1i(¥71) @+ @) @ li(sXo(1) © v © 5X5(1)) © Y2y @ - © Yynmiv)-

The total sign_of this element is €(o, sxi, ..., $X,) - €(T, y‘{ wos Yo_iey)- Now we regard the summand
coming fromi = j, j = i and & € ush(i,n —1) ,% € up(j,n,1) defined as follows:

e ¢ is the unshuffle that, given the strictly ascending list (sx), ..., $x,), moves the elements

Y1y s Yoy to the front.

e 7 is the unshuffle that, given a list starting with l}(y‘,’“) Q... © Yy and continuing with a
strictly ascending list o{ [)‘:(M). s r’(n_i+l)] ] [sxm), R sx‘,(i)], moves the elements
(8Xi(1)s --» X)) to the front. -

By construction the summands belonging to (i, j,o-, 7) and (i, j, &, 7) are equal up to sign. The
signs come from the odd transpositions in o, 7, &, T and from interchanging /i(sxy(1) ® ... © X))

with [;(y7, © ... O r’m).

First of all let us take a look at the transpositions nessecary to move the elements )7, with
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