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Preface

“Through understanding of what, pray, does all this
world become understood, Sir?"’ .
Mupgdaka Upanigad, 1-1-3

The present century has seen the development of modern physics along
two major directions—the theories of relativity and gquantum mecha-
nics. For a proper understanding of  the basic concepts of quantum
mechanics,a sound foundation in matrix algebra and vector spaces is
essential. Similarly, tensor analysis and differential geometry provide
the mathematical foundation for the theories of relativity. It is from
this point of view that matrix algebra and tensor analysis have been
selected for presentation in this book.

Matrices and tensors are generally taught to B.Sc. and M.Sc.
(physics) students in Indian universities in a course on mathematics
or mathematical methods in physics. Matrices are generally taken up
directly without recourse to vector spaces and transformations. How-
ever, the connecting link between matrices and quantum mechanics
is vector spaces, and it is often found that students fail to grasp the
fundamental principles of quantum mechanics because of 'a lack of

" understanding cf vector spaces. The first chapter of this book starts
by introducing vector spaces and transformations, and matrices aris-
ing from it. This also gives the proper historical perspective because
the study of matrices arose in connection with transformations in
vector spaces. Emphasis is given to important concepts needed in
quantum mechanics, such as linear combinations, linear dependence
and independence of vectors and matrices, number of independent
parameters of various special matrices, the most general matrix of a
given type, etc. Section 9 contains an improved proof of the theorem
that two matrices can be simultaneously diagonalized if and only if
they commute with) each other. Topics such as nondiagonalizable
matrices and functions of a matrix are also included. Infinite (dis-
crete and continuous) matrices arc also discussed briefly at the end
of chapter I.

The second chapter deals with the algebra and the calculus of gene-
ral tensors in an N-dimensional Riemannian space. Many physical
examples are given showing the necessity of the use of second and
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higher rank tensors. These include the conductivity tensor, the effec-
tive mass tensor, stress and strain tensors, tensors of elastic stiffness
and compliance constants, piezoelectric strain coefficient tensex, dielec-
tric susceptibility tensor, momeat of inertia tensor, curvatur.: tensor,
etc. In this chapter, emphasis is given on the proper use of free and
dummy indices in tensor equations. Einstein’s summation convention
is explained in detail and common errors arising in its use zre pointed
out. Fules are given to check the correctness of indices in a tensor
equation.

Although it is desirable to have an elementary knowledge of vector
spaces for a better understanding of the use of matrices and of the
eigenvalue problem, the matter i§ so arranged that a reader wishing
to proceed straight to matrices without going through vector spaces
may skip Section 1 without much loss of continuity. However, it is
felt that this is not the correct approach.

There are two appendices in the book. Appendix I discusses the
logic of the phrases such as «if”’, “only if”’, and “if and only 1f”.
Appendix II gives a proof of the result that a finite nonsingular matrix
(that is, one possessing both left and right inverses) niust be square.

Altogether about 100 solved examples are included, and about 200
exercises are given in the book. Many of the exercises anticipate
what is to come in the succeeding sections. Answers to selected
exercises are given at the end ot the book and such exercises are
marked with asterisks.

The book has developed from courses given to graduatc and post-
graduate students during the past six years. Students’ problems and
queries have helped a lot in the preparation and presentation of the
material. I am also thankful to my colleagues and senior students for
their help during the preparation of the manuscript. Suggestions and
comments from readers will be welcome.

A. W. JosHI
June, 1975



Set theoretical notation

belongs to, belonging to

such that

* there exists '
for every, for all

is contained in

contains

implies, only if

is implied by, if, follows from

: implies and is impli d by, if and only if
does not imply

is not implied by, does not follow from

APsrsUunN<s wum

ExAMPLE: An expression such as

dee Goxe=ex=xY¥x€EG
means that “there exists an element e belonging to G such that xe = ex = x for
all x belonging to G”’.
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| Matrix Algebra

Matrices occur in physics mainly in two ways: first. in
the solution of systems of linear equations, and second, in the
solution of eigenvalue problems in classical and quantum mecha-
nics. Both these types of problems arise, in turn, from transfor-
mations of vectors in vector spaces and the operation of linaar
operators on vector spaces. The methods of matrix algebra are
not only useful but essential in handling such problems. In this
chapter, we shail discuss various operations with matrices and
different situations in which they can be applied.
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1. Vector spaces and transformations

We shail begin by discussing how matrices arise in connection with
vector spaces. For the sake of completeness, it will be convenient
to define a group and a field before coming to vector spaces.

Group

Consider the set R={x: x=a real number}, the set of all real
numbers. The elements of R, endowed with a law of addition,
satisfy four properties: . (a) for any two ieal numbers x and y
belonging to R, their sum x+y belongs to R; (b) there exists an
element 0 in R, called zero, such that x+0=0-+4x=x for every xE R;
(c) for every xE R, there exists a unique element y in R such that
x4y=yp4x=0; (d) for any three elements x, y and z of R, the
associative law is satisfied, that is, x4 (y+2)=(x-+y)+z.

Similarly, consider another set, U(1)={z: |z|=1}, the set of all
complex numbers of unit magnitude. The elements of U(?), endowed
with a'law of multiplication, satisfy four properties: (a) for any
two complex numbers of unit magnitude x and y, their product is
also a complex numbers of unit magnitude and hence belongs to
U(1); (b) there oxists an element 14-0i, where i=+v/—1, or 1 for
short, in U(1) such that xl=1x=x for every element x of U(l);
(c) for every x€ U(1), there exists a unique e'ement y in U(1) such .
that xy=yx=1; (d) for any three elements x, y and z of U(1),
the associative law is satisfied, that is, x(yz)=(xy)z.

We notice that the four properties satisfied by the two sets are
similar in nature. In fact, both the sets considcred above are
examples of a group. -

In general, a group is defined as a set G={x, », z....} endowed
with a binary law of composition for its elements such that it satisfies
the four properties listed below by using the set theoretical notation:

(@) CLOSURE: xyeG¥x, yEG;

(b) EXISTENCE OF IDENTITY: de€GDxe=zex=rx€G;

(c) EXISTENCE OF INVERSE: ¥xEGIyEGIDxy=yx=e; )
(@) ASSOCIATIVE PROPERTY: x(y2)=(x))z¥'X, ¥, 2EG.

These are known as the group axioms. The element e satisfying property
(b) is known as the identity element of the group, and if xy=px=—e
[property (c)], ¥ is-known as the inverse of x and vice versa.
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It is not necessary that the law of composition of group elements
be commutative. In fact, in gzneral, it is not, so that xy#£yx¥x,
yE G, where G is a group. If, in particular, xy=yx¥%'x, yEG, G is
said to be an albelian group. Both the examples discussed above are
abeliar groups.

Field

A field F={a, b, c, d,...} is a set of elements, endowed with two
binary laws of composition for its elements, one denoted by + cailed
uddition, and the other denoted by o called multiplication, such that
the following two conditions are satisfied :

(a) F is an abelian group under addition with the identity elemeat
denoted by O and called zero; and

(b) the set of the nonzero elements of F is an abelian group
' under multiplication with the identity ¢lement denoted by 1 and called
unity.

0is called the 2dditive identity while 1 the multiplicative identity of the
field.

Ezamples of a field are:

1. The set R cf all real numbers with the additive identity 0 and
the multiplicative identity 1.

2. The set C of all complex numbers with the additive identity
0-4-0i and the multiplicative identity 14-0i.

3. Theset{0,1,2,...,p—1} of p integers, where p is a prime
number greater than 1, with the two binary operations of addition -
modulo p and multiplication modulo p; a finite field is called a
Galois field.

The elements of a field are called scalars.

Vector space

Aset L={u, v, w,...} is said to be a vector space over a fizld F if
the following two condmor-s are satisfied:

(a) An cperation of addition denoied by + is defined in Z such
that L is an abelian group under addition. The identity element of
this group will be denoted by 0

(b) A scalar of the field F and an element of the set L can be
combined by ar operation called scalar multiplication to give an
element of L such that for every u, v€ L and a, bEF, we have
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a(u+v)=au+avelL; (a+b)u=aut+buElL,
a(bu)=(a o H)u, lu=u, Ou=0. 2

The elements of a vector space are calied vectors. Also note that
0 is an element (the additive identity) of F, whercas 0 is the null
vector of L. The phrases linear vector space and linear space are
also used for a vector space. Henceforth, we shall drop the multi-
plication symbol for scalars and write, for example, a o b simply as
ab.

The familiar three-dimensional space of position vectors is an
example of a vector space over the field of real numbers. First, it is
evident that the set of all position vectors is an abelian group. For,
if u and v are any two vectors of this space, u4-v=v+u is also a
vector of this space. The idegtity element is the null vector 0. The
‘inverse’ of a vector u is the vector —u, because u+(—u)=0.
Moreover, the law of vector addition is associative. Second, the
position vectors satisfy the properties listed in Egs. (2) for all @, b
belonging to the field R of real numbers.

Linear independence ef vectors

Two nonzero vectors u and v of a vector space are said to be
linearly dependent if one is a multiple of the other, i.e., if u=cv,
where ¢ is some scalar. In other words, u and v are linearly de-
pendent if it is possible to find scalars ¢ and b different from zero
such that au--bv=0. Note that this is equivalent to saying that u
is a multiple of v and vice versa.

Conversely, two vectors u and v are said to be linearly independent
of each other if one is not a multiple of the other. In this case, it
is impossible to satisfy the equation au-+bv=0 except when a=>5b=0.
~ The concepts of linear dependence and independence of vectors
can be extended to more than two vectors. Consider a set of n
vectors X;, X,,...,Xn, None of which is a null vector. The vectors
of this set are said to be linearly dependent if it is possible to find
scalars a,, a,,. . .,an, at least two of which are nonzero, such that

a;X1+ 83X+ . . . +a,Xn=0. 3)
Suppose the coefficient g; is different from zero. Then dividing Eq.
(3) by a;, we have
xi=b1X;+. . . + b1 Xiy + 01 Xit1+ - - - +DnXa, 4)
with b,=—a,/a;, Thus we can say that the n vectors of a set are
linearly dependent if at least one of them can be expressed as a linear
combination of the remaining n—1 vectors. '
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Conversely, the n vectors of a set are linearly independent if the
only solution of Eq. (3) is @;=0 for 1<i<n. In other words, the
vectors of a set are linearly independent if it is impossible to cons-
truct the null vector from a linear combination of the vectors except
when all the coefficients vanish. '

As an example, in the space of three-dimensional position vectors, it
is possible to find a set of three, but not more than three, linearly
independent vectors. If we choose the three linearly independent
vectors to be x,, X, X;, any other vector of the space can be ex-
pressed as a linear combination of these three vectors in the form

P =X 0,X, 05X (5)

The dimension of a space is ‘defined as the maximum number of
linearly independent vectors in the space. A set of n linearly inde-
pendent vectors in an n-dimensional vector space is called a basis
for the vector space. Clearly, the basis is not unique and we may
choose the basis in an infinite number of ways.

Vector space of n-tuplets

The vector space of n-tuplets is the most general vector space in
the sense that every vector space is a set of n-tuplets. An n-tuplet is
an ordered set of n numbers, real or complex, such as u=(u,us,. . .,un),
where u; are any numbers, all of the same type (that is, real or
complex). If we consider the set of all such elements (u,v,...)
obtained by giving all possible values to the components u;, we have
the vector space of n-tuplets; u, are said to be the components of the
vector u. A vector all of whose components are real numbers
is said to be a real vector. A vector space whose vectors are real is
called a real vector space. We shall in general consider the vector
space of complex n-tuplets.

A vector all of whose components are zero is called the null vector:
6=(0, 0....,0). Two vectors of a vector space are said to be equal
to each other if, and only if, their respective components are cqual
to each other. Thus,

u=v&u;=v; for 1<<i<n. ©)
The addition of two vectors and the scalar multiplication are defined
as follows:
n+v=viu=(u;+v;, Ug+Va, ..., Un+Vy), (7a)
au=ua=(au,, au,, ..., aly,), (7b)
boih of which can be seen to be elements of the vector space.
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Inner product space

A vector. space L defined over a field F, where Fis the field of real
or complex numbers, is called an inner product space if with every
pair of elements u, vE€ L, there is associated a unique number
belonging to the field F—denoted by (u, v) and called the inner
product or the scalar product of u and v—for which the following
properties hold:

(u, V)=(v, u)*,
(au, bv)=a*b (u, v), ®
(w, au+bv)=a(w, u)+-b(w, v),
where the asterisk denotes the complex conjugate.

The vector space of n-tuplets of real or complex numbers can be
made an inner product space if we define the inner product of two
vectors by '

(u,v=> u*v,. 9
i=1
The ordinary three-dimensional space of position vectors is also an
inner product space with the familiar rule for taking the scalar
product of two vectors.

ExampLE 1: Determine whether the four vectors
u=(1,2,3), v=(2,0, —1),
w=(l, =1, 1), x=(2, 1, 0) (10)
are linearly dependent or independent. ‘
Solution: We solve the equation
au-++-bv4cw+dx=0 (¢8))
for the unknown coefficients a, b, ¢, d. Substituting for the vectors
from Egs. (10) and using the rules of vector addition and scalar
multiplication given in Egs. (7), Eq. (11) becomes
(a+2b+c+2d, 2a—c-+d, 3a—b+c)=(0, 0, 0). (12)
This gives us the three simultaneous equations

a+2b+c+2d=0, 2a—c+d=0, 3a—b+c=0, (13)
which have the solution
b=12a/5, c=—3a/5, d=—13a/5, a arbitrary. (14)

Thus Eq. (11) can be satisfied without all the coefficients being zero.
We can write Eq. (11), using Eq. (14) and taking @=35, as

Su+12v—3w~—13x=0. (15)
The given vectors are thgrefore linearly dependent.
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EXAMPLE 2: It can be shown that we can find a maximum of »
linearly independent vectors in the vector space of n-tuplets. We
can conveniently choose these n independent vectors or ‘coordinate

axes’ as
el——-(l, 0, 0, e O)w

€=(0,0, ..., 1,y 4. 0), (16)

ea=(0,0,0,....1),
where 1; means that unity occurs in the i-th position. We shall now
prove the following two results.

(@) The n vectors (ey, €, ...,e,) are lincarly indepenident.
Solution: We consider the equation
a,e,+ae;+. .. +aen=0. (17N

Substituting for the vectors from Egs. (16), we see that Eq. (17)
becomes
(ay, Gys. .5 a,)=(0,0;.7% O} (18)
The only solution of Eq. (17) is therefore a,==0 for 1<i<n, showing
that the n vectors are linearly independent.
(b) Any vector of the space (that is, any n-tuplet) can be uniguely
expressed as a linear combination of the n vectors e;.
Solution: Consider a vector w=(uy, Uy, ..., 4,). Let us try to
express it in the form
u=b,e,+be,+...+bnpen. (19)
This equation has the solution &;=u; for 1<ign, so that Eq. (19)

becomes
n

u=> ue;. (20)
i=1

If we také the scalar product of a vector with itself, we find from
Eq. (9) that

(u, w)=3" | | @n
i=1
The positive square root of this quantity is defined as the norm of
the vector u and is denoted by

T =, wpe=] 3" | 52]”2. 22)

i=1
1t is easy to recognize that this is the length of a vector in familiar
language. If the norm of a vector is unity, it is called a unit vector or
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a normalized vector. It can be seen that all the vectors e, e,, ..., e,
defined in Egs. (16) are unit vectors.

If the scalar product of two vectors is zero, the vectors are said to
be orthogonal. Thus two vectors u and v are orthogonal if, and only if,

(8, V)=0. 23)
Once again it can be verified that any two vectors of the set {e;} are
crthogonal. Combining this with the earlier result, we have

(e ei)=8ii- (24)
A set of vectors each of which is orthogonal to all the remaining
vectors of the set is called an orthogona! set. If each of the vectors
is further normalized to unity, it is called an orthonormal set. A
vector can be normalized by dividing it by its norm. Thus, if ais
any vector, u/|| u || is the normalized vector parallel to u.

Schmidt’s orthogonalization method

It is possible to obtain a set of orthogonal, or in fact orthonormal,
vectors starting from a set of nonorthogonal but linearly independent
vectors. Thiscan be done by a procedure known as the Schmidt’s
orthogonalization method which is discussed below.

Let u;, u,, ..., u, be aset of linearly independent vectors which
are not necessarily orthogonal. It is required to obtain a set of
orthogonal vectors vy, V,, ..., V, starting from the original set of
vectors. We proceed along the following steps:

I '“Take v, =1;.

2. Let v
Vo=, +ay; V3, 29
where a,, is a constant to be determined from the condition thatv,
be orthogonal to vy, i.e., (v;, ¥,)==0. Taking the scalar product of v,
with v, of Eq. (25) and equating it to zero, we get

o (Va5 Up)Fayy (v, V) =020 = —(v;, ,)/(¥y, V2)- (26)
Thus we have two orthogonal vectors, v; and v,.
3. Let
V3=Ug+dzs Va+da; ¥y, @7

where a;, and a,, are constants to be determined from the conditions
that v; be orthogonal to v, and v,. This gives

(V1 V) =0=(y,, "_s)+aal (Va, V)= @3y =—(¥y, 83)/(Vy, V1);

(Vg ¥3)=07=(Vy, Ug)+ 03y (Va, Vo) > Aga==—(V3, Up)/(¥3. V3)- (28)
Now we have three mutually orthogonal vectors, v,, v, and v,.



