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Preface

Although our full understanding of elementary particle physics remains an
exciting and elusive goal, there is much in quantum electrodynamics that is
considered well established. A comprehensive knowledge of quantum
electrodynamics is indispensable for theoretical as well as experimental
physicists in the exploration of the interactions of elementary particles. I
have aimed at a concise and coherent presentation of the basic theory,
calculational techniques, and important applications of quantum electro-
dynamics. Mathematical manipulations are explained in sufficient detail,
and many derivations are provided in unusually simplified form.

In order to clarify the underlying ideas, fundamental principles of the
quantum theory of fields are fully discussed, and the general formalism is
developed in a manner that is also applicable to a considerable extent to
strong, weak, and gravitational interactions.

This book is essentially self-contained, but it presupposes knowledge
acquired in a standard one-year graduate level quantum mechanics course.
I have made special effort to ensure that the book is useful and rewarding
to both researchers and students.

It is a pleasure to thank Sandra Hoffmann for secretarial help in the.
preparation of the manuscript.

Suraj N. Gupta
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CHAPTER 1

Classical Theory of Fields

It is well known that classical mechanics is able to explain only a limited

type of experimental results, while more refined experiments have revealed

the need for quantum mechanics. Although the classical theory does not

' provide us with a complete description of nature, it is nevertheless a self-

consistent theory. It is simpler and more familiar than the quantum theory,
and is able to explain the observed facts within its limited domain. Moreover,
in the formulation of the quantum theory we are often guided by the
classical theory. It will, therefore, be useful to be familiar with the classical

electromagnetic field and some general principles of the classical field

theory.

1 Tensors and Lorentz Transformations

We shall first explain the tensor notation to be used in this book. A four-
vector will be denoted as 4, and a tensor of the second rank as 4,,, where
Greek indices always take the values 1, 2, 3, 4. In particular. the four-
dimensional coordinates of a point will be denoted as x,, where x,, x,, and
Xy are the space coordinates. and x4 = ict. The space components of any
four-vector A, will be denoted as A4; or A, where Latin indices always take
the values 1, 2, 3. A repeated Greek or Latin index will imply. summation
over all values of the index. We shall often explicitly use the index 0 instead
= of 4, the connection between the (wo indices being

Ay = iAo, Aig = A, Agy = iAg;. Ags = iZAoo = =Aoq

(1.1)
but it should be noted that we shall denote ¢/cx, as ¢, and (/0xq as &y,
and consequently ¢, = —ic,. For convenience we shall sometimes drop the

indices of four-vectors, denoting A4, as A, A,B, as A-B, A as A% and
¢Z as ¢2. We shall also denote dx, dx,dxy as dx and dx, dx,dx;dx, as dx.
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A four-vector A4, will be said to be real if 4; and A, are real, and
similarly a tensor A4,, will be said to be real if A;, A;, Ag;, and Agyg are
real. Special care is required in dealing with complex conjugates of tensors.
We shall always use an asterisk to denote the complex conjugate of any
quantity that is not a tensor. An asterisk will also denote the complex
conjugate of any tensor component that carries only the indices 1, 2, 3, 0,
but if the index 4 occurs n times in a tensor component, then an asterisk
will denote (—1)" times the complex conjugate of the component. Thus, the
complex conjugate of the relation 4, = id, is

—AY = —iA}
or
AY = iAS, (1.2)
and similarly
Afy = iAly, AL = iA%, Al = —AQ,. (1.3)

It follows that if 4, and A, are real, then
' A* = A, A% = A, (1.4)
Any linear transformation of the space-time coordinates x, that leaves
the quantity x? invariant is called a Lorentz transformation, and such a
transformation is expressible as
X, = a,, X, (1.5)
with
a“;‘a\,a = a;.“a“ = 6‘”. : (1.6)
All Lorentz transformations are made up of one or more of the following
three transformations: (1) proper Lorentz transformations, (2) space in-

version, and (3) time reversal. A proper Lorentz transformation corresponds
to a continuous rotation of the space-time axes, while under space inversion

Xp ==X, X3 = X (1.7)
and under time reversal .
X, = x; Xy = —Xg4. (1.8)

Space inversion is also known as the parity operation, and a quantity is
said to have even or odd parity according as it remains unchanged or
undergoes a change of sign under space inversion.

Let us consider a Lorentz transformation that corresponds to an
infinitesimal rotation of the space-time axes. Under such a transformation

X, = X, + W, X,, (1.9)
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where the w,, are infinitesimal quantities, so that
a,, = 0,, + W,,,
which, when substituted into (1.6), gives
Wyy = — Dy (1.10)
It is also useful to note that :
0w,,/0W,5 = 0,3 0,5 — Oyp Oya- (1.11)

Any proper Lorentz transformation can be built up from the simpler
infinitesimal transformations given by (1.9) and 1.10).

2 Laws of Classical Electrodynamics

Classical electrodynamics deals with the interaction of the electromagnetic
field with charged material bodies. The electromagnetic field is described
by the electric field strength E and the magnetic field strength H, which
are functions of space and time. On the other hand, the charged material
bodies give rise to a charge density p and a current density pv in the field,
where v is the velocity of the charge. The dependence of the electromagnetic
field on the presence of the charges is given by the Maxwell equations

1E 1
\% —_—— = )
x H 7= cpv, (2.1)
V-E=p, (2.2)
16H
VxE+—E—0 (2.3)
V-H =0, (24)

while the force experienced by the charges due to the electromagnetic field
is given by the Lorentz equation

K =pE+§(va), 2.5)

where K denotes the densnty of force exerted by thc electromagnetic field
on the charges.

The above equations can be expressed in a covariant form, if we regard
pv and cp as the components of a four-vector j,, and E and H as the

-components of an antisymmetrical tensor F,,, such that

(jl’jiij) = pv, .’l == iCP, (26)
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(F23,F31,F12) = H,  (F4y,F4p,Fy3) = IE 2.7
We can then express (2.1) and (2.2) as
, %
0, Fy = E-’u’ (2.8)
and (2.3) and (24) as
OpF 0, F, 0, F,, =0, (2.9)
It is also possible to write.(2.5) in the covariant form
: 1
Ky =~ Fuiss e - 2.10)

where the space components of K, correspond to K. In order to interpret
the meaning of the time component of K, we note that, according to (2.10),
(2.6), and (2.7),

| e
‘ Ko = —Faji = 2 (EW),
which gives, on account of (2.5),
Ko=1(K-V)=f, (2.11)
c c

where w = K -v denotes the rate of work performed by the field on the
charges per unit volume.
Differentiation of (2.8) with respect to x, yields

I -
6“6,F“v = Eauj".

Since F,, is antisymmetrical, the left side of the above equation vanishes,
and thus .

Oudu = 0, (2.12)

which expresses the conservation of charge.

3 Electromagnetic Energy-Momentum Tensor

It is possible to express the force density (2.10) as the four-divergence of a
tensor by using the field equations (2.8) and (2.9) and the fact that F,, is
antisymmetrical. For, aocoxfding to (2.8) and (2.10),

K, =F,0,F,, = 0,(F,F,)—F,0,F,, (3.1)
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while multiplication of (2.9) by F,, gives '
Fonn Favit FopOu Koy 4 Fipln e 70 i (3.2)

ve

or, with interchange of the indices v and p in the second term of (3.2),

2l nlnkyy T Bl by =,
so that

F.,é,F. = —3F,,&,F,, = —}0, F2. (3:3)

It then follows from (3.1) and (3.3) that
K‘, = ("a(Fuv va) +* %‘ﬁu(szp s

which can be put in the form

K, = -4,T,, G4
with
T;n = Fup va Lk %énv F;lzp ' (3'5)

The tensor T,,,, which is symmetrical, is called the energy-momentum tensor
of the electromagnetic field.

In order to interpret the physical meaning of the various components of
T,,. we write (3.4) as

' 1¢T,0

R T

so that, with integration over a volume V bounded by a surface S,
Id |
K, dx = —| 0, T, dx "EIJ To dx.

The first term on the right side of the above equation can be converted
into a surface integral, which gives

1d
‘{K,, dx = —j’lj,,- ds; — Ed—J'I},o dx, (3.6)
where dS; is an element of surface multiplied by a unit vector normal to

the surface element in the outward direction.
Let us consider the time component of (3.6), which is given by

1d

J.Ko dx = —J Tog dS‘ bt Ezj Too dx

or, in view of (2.11),

d

—EI‘J-T(.)O dx = ICTOi dS, +j w dx. (3.7)
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The above equation expresses the law of conservation of energy, if we regard
[Too dx as the electromagnetic energy in the volume V, and [cT,, dS; as
the rate of flow of energy out of the surface S. For, then (3.7) simply means
that the rate of decrease of energy in the volume V is equal to the rate of
flow of energy out of the volume V plus the rate of work performed by the
field within this volume. Thus, the energy density H in the electromagnetic
field is

Hi= TOQ‘_= Fop Fop + %Flzp* (3.8)
and the rate of flow of energy in any direction through unit area is
Ni = C’I;)l' - CFO‘A Fl"n (39)

the vector N; being called the Poynting vector. These results can also be
expressed in terms of the electnc and magnetic field strengths with the use
of (2.7) as

= }(E* + H?), N = ¢(E x H). (3.10)

Similarly, we consider the space components of (3.6), which are given by

[ = a5, 2 [

or
d

T dt

The above equation expresses the law of conservation of momentum, if we
regard [(To/c) dx as the momentum of the electromagnetic field within the
volume ¥, and [T, dS, as the rate of flow of momentum out of this
volume. For, then (3.11) means that the rate of decrease of momentum in
the volume Vis equal to the rate of flow of momentum out of the volume
V plus the force exerted by the field within this volume. It follows that in
an electromagnetic field the momentum density G; is
1

G, = ~T,, (3.12)
{if

jl Tio dX = [ﬂde,+jKidx. (3.11)

and the rate of flow of the ith component of momentum along the x, axis
through unit area is Tj;. '

It is interesting that although the Lorentz equation for the force density
is a basic equation of electrodynamics, the sign of the force density is fixed
by the Maxwell equations. For, if we change the sign of the right side of
(2.10), the corresponding energy-momentum tensor will differ from (3.5) by
a negative sign. Thus, the energy density in the electromagnetic field will
* have the negative value —}(E? + H?), which is physically inadmissible.
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4 Electromagnetic Potential

In order to express the Maxwell equations in a simpler form, we put

: Fuv = @uAv_(‘:vAu' - (41)
where the four-vector 4, is called the electromagnetic potential. Since the
tensor F,, is real, the potential A, can also be taken as real. Substitution
of (4.1) into (2.9) leads to an identity, and therefore (2.9) can now be
disregarded, while substitution of (4.1) into (2.8) gives the field cquatnon for
the electromagnetic potential

8,8,A, — 0’4, 4.2)

ﬁl—

‘l

_According to (4.1), A, is not uniquely determined by the electromagnetic
field tensor F,,. Indeed, F,, remains unchanged under the transformation

A, = A, + 3,A, (4.3)

wh‘ere_ A is an arbitrary space-time function. The above transformation of
the electromagnetic potential is called the gauge transformation.

The gauge transformation can be used to simplify the field equation.(4.2).
For, let A, represent a possible value of the electromagnetic potential for
a given value of F,,, and let us consider a function A such that

W2A . A4
GilNe= = A

uv*

Since it is known that the above equation can be solved for A, it is always
possible to find the required function A. If a gauge transformation is now
carried out such that the new electromagnetic potential is given by

A, = /iu + 7, A,
we find that
A, =0. (4.4)

Thus, the electromagnetic potential for a given electromagnetic field can
always be chosen in such a way that (4.4) is satisfied. The relation (4.4)
is called the supplementary condition, and with the use of this condition
(4.2) reduces to the inhomogeneous wave equation

l.
(‘;ZA“ = —;_]“ (45)

Even when the supplementary conditi(;n is used, the electromagnetic
potential is not determined by the electromagnetic field. For, both (4.1) and
(4.4) remain unchanged under the transformation (4.3) provided that A
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satisfies the wave equation ‘
@A =0 ; (4.6)

The transformation of the electromagnetic potential given by (4.3) and (4.6)
represents a restricted gauge transformation.

5 Radiation Field

According to the Maxwell equations, the electromagnetic field depends on
presence of charges in the field. But. even in the absence of charges the
electromagnetic field does not in general vanish, because then (4.5) only
reduces to the homogeneous wave equation

024, = 0. (5.1)

A general solution of (5.1) can be obtained by a superposition of plane
waves of the form

' A" = a“[ei(k-x—koﬂ+0) 4 e‘“""‘"“"“’] » (5.2)
with '
k| = ko, (5.3)

which represents a plane wave traveling with the velocity ¢ in the direction
of the vector k. Since (5.2) must satisfy. the supplementary condition (4.4),
it follows that 3 ,

kia; — koa, = 0. (5.4)

We regard A as consisting of a longitudinal component along k and two
transverse components perpendicular to k, and we call 4, the temporal
component of A,. In order to examine the properties of these various
components, it is convenient to choose the space axes in such a way that
the x; axis is along k. Then, A, and A, are the transverse components of
A,, while 4; and A, are the longitudinal and temporal components,
respectively. With such a choice of the axes,

ky =k =0, ks =[k| = ko, (5.5)
so that (5.2) becomes
A, = aﬂ[eiho(x;-d)+8+e-iko(xg—a)—l&]’ (5.6)
while the supplementary condition (5.4) takes the form
ay —ap = 0. (5.7)

Using (4.1), we can find the electromagnetic field F,, due to the potential
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(5.6), and then, with the help of (2.7), we can write its various components as
H1.= —koa, f, H; = koa, f, Hy =0,

) (5.8)
E, = koa, f, E, = koas f, Ey= ko(as —ao)f = 0,

with ;
£ = iftoes =i _ p~itaes=ar-ie) (59)

where the component E, in (5.8) vanishes because of the supplementary
condition (5.7). Thus, even in the absence of charges the electromagnetic
field can contain plane electromagnetic waves, which possess energy as can
- be seen by substituting (5.8) into (3.1Q). An electromagnetic field that does
not contain any charges is called a pure electromagnetic field or a radiation
field. -
According to (5.8),

EIH1+E2H2+E3H3=O, E3=H3=0, (5.10)

which shows that the electric and magnetic fields due to a plane electro-
magnetic wave are perpendicular to each other as well as to the direction
of propagation of the wave. The plane perpendicular to the electric field
E of such an electromagnetic wave is taken as its plane of polarization.
The relations (5.8) further show that in a radiation field the electric and
magnetic field strengths depend only on the transverse components of the
electromagnetic potential. Therefore, the longitudinal and temporal com-
ponents of the electromagnetic potential do not give rise to any physical
effect in a radiation field. In fact, in a radiation field these components can
also be eliminated by subjecting (5.6) to the gauge transformation (4.3) with
A= 'kﬂ)[eiko(x3~cn+ia _e—iko(xg—a)-io], (511)
0

and then making use cf (5.7). It must, however, be remembered that the
longitudinal and temporal components. of the electromagnetic potential
cannot be ignored in the presence of charges.

6 Variational Principle for Classical Fields

In the preceding sections, a brief account of the classical electromagnetic
field has been given. We shall now describe some general principles of the
classical theory of fields.

In classical physics a field is described by one or more space-time
functions satisfying certain partial differential equations, which are called
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‘the field equations. It is generally believed that the fields of physical interest

can be described only by those field equations that can be obtained by
means of Hamilton’s variational principle in the following way:

Let L be a Lorentz-invariant function of any number of linearly
independent field variables u'*),u'®,-.- u™ and their first space and time
derivatives, so that

L = L, u"), (6.1)

where r takes the values 1,2,--- n. Further, let us denote the integral of L
over an arbitrary volume ¥ and an arbitrary time interval 1, to 1, by

e | d:J dx L. (6.2)

v
and assume that the above integral is stationary for any arbitrary infini-
tesimal variations of the u'” provided that these variations vanish at the
boundary of the domain of integration, i.e.,

~r2 o
51=J dtJ A%k =10 (63)
1 ¥

for the arbitrary infinitesimal variations
" >y + Su” (6.4)
with
ou” =0 at the surface of V,
=0 fort=1t, and 1=t (6.5)

According to the above variational principle, we obtain from (6.3), with
the use of (6.1),

E b S
Y ‘ dt dx{(, o O+ S O M} - (66)

so that (6.6) can be expressed as
2 ) Il g 4 .
Z j:, dtJ dx{.um ou'" C,“l:c’(é‘ G ] ou™
eL cL :
| —— out” op' 1o =0, 6.
ol i) o sl w0




