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Foreword

The Methods in Enzymology series, which was originally published as
a four-volume treatise over twenty-five years ago, has now grown to over
100 volumes. It has become more and more difficult for an individual
investigator to locate particular methods of interest, especially in rapidly
developing fields in which pertinent information now appears in many
volumes of the series. Although individual and cumulative indexes are
provided, the task of information retrieval is still formidable. We have,
therefore, undertaken to provide such investigators and their students
with a single volume work in a given area of interest, compiled by selec-
tion of the most essential and widely used procedures published in vol-
umes of Methods in Enzymology in that particular area. The aim is to
permit the individual investigator or student to have conveniently at hand
all of the basic methodology in that field at relatively low cost. The arti-
cles, which are selected by the editors in that area, will be unabridged. A
new Subject Index will be prepared for each volume of ‘‘Selected Meth-
ods in Enzymology.”’

It is our intention that one volume of “‘Selected Methods’* will be
derived from several related volumes of equivalent size in the parent
series. This volume of the **Selected Methods series deals with Contem-
porary Enzyme Kinetics and Mechanism and is comprised of articles
selected by Dr. Purich from volumes of the Methods in Enzymology series
for which he served as editor. It also includes a supplementary chapter
[19] described in the Preface. We hope that this experiment in publication
proves useful to the broad audience for this new series.

SipNEY P. CoLowick
NATHAN O. KAPLAN



Preface

While the pace of research on enyzmic catalysis has increased as a
result of many experimental and theoretical approaches, certain methods
and perspectives in the area of enzyme kinetics and mechanism have
constituted a nucleus about which the field continually grows. Thus, for
even the very latest emerging concepts concerning enzyme action, one
may trace their roots back to this nucleus of theory and practice.

This particular volume of Selected Methods in Enzymology was orga-
nized to provide researchers, students, and other interested readers with
a reasonably representative view of ‘‘Contemporary Enzyme Kinetics
and Mechanism’” by covering these central areas. The basic idea was to
include a limited number of chapters from Volumes 63, 64, and 87 of
Methods in Enzymology, ‘*‘Enzyme Kinetics and Mechanism,’’ Parts A,
B, and C, respectively. I believe that this selection will provide the inter-
ested reader with an excellent view of contemporary methads and per-
spectives as well.

A new chapter [19], entitled *‘Selected Exercises and Problems,’” has
been added. This addition should serve to make the volume more
useful to students and other interested readers. It includes a series of
exercises and problems which build on each other in a progressive man-
ner. This chapter should convey to the reader the importance of achieving
proficiency in formulating quantitative relationships describing enzyme
behavior. Only when one has the ability to derive, manipulate, and under-
stand such relationships can one begin to explore and to unravel the
subtleties of enzymic catalysis. The problem set is, nonetheless, only a
starting point, and I have added many references to the literature to
encourage further awareness of the field. The exercises and problems
were not meant to cover all of the chapters in this volume, so to estimate
the importance of any single chapter by the number of questions associ-
ated with it would be an error. It was also apparent that step-by-step
solutions would be difficult to provide because of space limitations. Yet, it
is also true that the presentation of one approach to the exclusion of
another might inhibit the reader’s development or mastery of other means
for achieving an equally adequate solution. A list of answers or hints for
solution appears immediately after the exercises and problems section
and should be helpful in checking one’s progress. I am grateful to Drs.
Charles Y. Huang, Bryce V. Plapp, and R. Donald Allison for suggesting
or providing several of the problems associated with their chapters.

This has been an interesting effort to organize a volume which will
introduce the reader to enzyme kinetics and mechanism at an intermedi-
ate level. As a reference book for individuals or as an additional textbook

xi



Xii PREFACE

for specialty courses on enzyme action, ‘‘Contemporary Enzyme Kinet-
ics and Mechanism’’ should prove useful.

Please note that where a cross reference is given to a volume or paper
in this series, it refers to the Methods in Enzymology series. Where only
volumes and paper numbers are referred to, the volumes too are those in
the Methods in Enzymology series. :

DANIEL L. PURICH
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[1] Derivation of Initial Velocity
and Isotope Exchange Rate Equations

By CHARLES Y. HUANG

A rate equation for an enzymic reaction is a mathematical expression
that depicts the process in terms of rate constants and reactant concentra-
tions. It serves as a link between the experimentally observed kinetic
behavior and a plausible model or mechanism. The characteristics of the
rate equation permit tests to be designed to verify the mechanism. Con-
versely, the experimental observations provide clues to what the mecha-
nism may be, hence, what form the rate expression shall take.

Derivation of rate equations is an integral part of the effective usage of
kinetics as a tool. Novel mechanisms must be described by new equa-
tions, and familiar ones often need to be modified to account for minor de-
viations from the expected pattern. The mathematical manipulations in-
volved in deriving initial velocity or isotope exchange-rate laws are in
general quite straightforward, but can be tedious. It is the purpose of this
chapter, therefore, to present the currently available methods with
emphasis on the more convenient ones.

Derivation of Initial Velocity Equations

The derivation of initial velocity equations invariably entails certain
assumptions. In fact, these assumptions are often conditions that must be
fulfilled for the equations to be valid. Initial velocity is defined as the reac-
tion rate at the early phase of enzymic catalysis during which the forma-.
tion of product is linear with respect to time. This linear phase is achieved
when the enzyme and substrate intermediates reach a steady state or
quasi-equilibrium. Other assumptions basic to the derlvauon of initial rate
equations are as follows:

I. The enzyme and the substrate form a complex.

2. The substrate concentration is much greater than the enzyme con-
centration, so that the free substrate concentration is equivalent to the
total concentration. This condition further requires that the amount of
product formed is small, such that the reverse reaction or product inhibi-
tion is negligible.

3. During the reaction. constant pH, temperature, and ionic strength
are maintained.

Copyright © 1983 by Academic Press, Inc.
CONTEMPORARY ENZYME KINETICS AND MECHANISM All rights of reproduction in any form reserved.
ISBN 0-12-568050-3



2 CHARLES Y. HUANG [1]

Steady-State Treatment

During the steady state, the concentrations of various enzyme inter-
mediates are essentially unchanged; that is, the rate of formation of a
given intermediate is equal to its rate of disappearance. This assumption

.was first introduced to the derivation of enzyme kinetic equation by
Briggs and Haldane.!

To derive a rate equation, the first step is to write a reaction mecha-
nism. The nomenclature used by Fromm in Volume 63 [3] will be
adopted here with the exception that rate constants in the forward and re-
verse directions will be denoted by positive and negative subscripts. For

example, the simplest one substrate—one product reaction can be written
as:

E+A.:;EAk—'>E+P

or | (1)

P
Ei—‘._‘-EA‘—‘Z»E

Since both the £_, and &, steps (or branches) lead from EA to E, the two
branches, as has been shown by Volkenstein and Goldstein,? can be com-
bined into a single branch. This simplification procedure will be used
whenever feasible.

kA
koy + ks

The intial rate is given by
v =dP/dt = k, (EA)

- Applying the steady-state assumption, we have

d(EA)/dt = k,A(E) — (k_,; + k))J(EA) = 0 (2)
To obtain-an expression for (EA), the enzyme conservation equation
Total enzyme = E, = E + EA 3)
is required. Substitution of (E) = (E, — EA) into Eq. (2) yields
(EA) = E A

[(k—y + k2)/ky] + A

' G. E. Briggs and J. B. S. Haldane, Biochem. J. 19, 338 (1925).
# M. V. Volkenstein and B. N. Goldstein, Biochim. Biophys. Acta 115, 471 (1966).



[1] DERIVATION OF INITIAL VELOCITY EQUATIONS 3

and
”

keEoA @)
[k_y + ko) /ki] + A
V,A
K.+ A

D= kz(EA) ™

where V, is the maximum velocity in the forward direction and K, is the
Michaelis constant.

It should be noted that the validity of the steady-state method does not
depend on the assumption d(EA)/dt = 0. Without setting Eq. (2) equal to
zero, one can obtain the following expression from Egs. (2) and (3):

k,AE, — d(EA)/dt

s Al A )

Wong? has pointed out that the steady-state approximation only requires

that d(EA)/dt be small compared with k,AE,. In the early phase of the

reaction, if A > E,, the rate of change of EA due to diminishing A will be

relatively slow. It is clear that the validity of steady state is intimately tied
to the condition of high substrate to enzyme ratio.

THE DETERMINANT METHOD

For a mechanism involving several enzyme-containing species, deri-
vation of the rate equation can be done by solving the simultaneous alge-
braic equations by the determinant method. Consider the mechanism
described by Eq. (1) with the addition of an EP intermediate.

kA k:
EL=EA7£EP—’>E+P )

The three simultaneous equations are given in the following form:

E EA EP
dE/dt = | —k,A k_, ks =0
dEA/dt = | kA —(k_y + ky) kg =0
dEP/dt =0 kq —(k_s + k) =0

The determinant, or distribution term, for E, for example, can be calcu-
lated from the coefficients listed above, after deleting the E column. For a
mechanism of » intermediates, only n — 1 equations are needed. Thus, by
leaving out the dEP/dt row, we can write

3]. T. Wong, "*Kinetics of Enzyme Mechanisms.’" Academic Press, New York, 1975..



4 CHARLES Y. HUANG [1]
k_y ks

—(k~1 + kz) k—z
If the dE /dr row is omitted instead, we have

—(k—l + kg) k_2
kz _‘(k_z + ks)

= k_y (kg + ki) + ko (k_p + k3) — kok_,
= k_tk_p + kg (k_y + kj)

(E) = ‘ = k_yk_s + kalk_, + ks)

(E) =

Note that deletion of different equations often leads to different amounts
of algebraic manipulations. Application of the same operations to EA and
EP yields

(EA) = kl (k_z + ks)A

(EP) = kik,A
The rate equation is readily obtained as
) k3(EP)
Egi-(E)=+ (BEA), +MEP)
kykoks A

Tk ko ¥ kalkl, ¥ ky) + ky(k_y + ka)A + kiko A
or
i koksEoA [(ky + k_p + ki)
{lh—rk=g + ka(k_y + ko)]/[kytky + k_y + k3)]} + A

VA
K, + A

v

(6)

Equation (6) is identical in form with Eq. (4). In fact, if k3 > k,, k_,, Eq.
(6) reduces to Eq. (4). Although Eq. (5) is a more realistic mechanism
compared with Eq. (1), especially when the rapid-equilibrium treatment is
applied to the reversible reaction. the information obtainable from
initial-rate studies of such unireactant system remains nevertheless the
same: V, and K,,. This serves to justify the simplification used by the ki-
neticist: that is, the elimination of certain intermediates to maintain brev-
ity of the rate equation (provided the mathematical form is unaltered).
Thus, the forward reaction of an ordered Bi Bi mechanism is generally
written as diagrammed below.

E

E . ab EA\\\;AB

\EA B//// rather than E\Em/




[1] DERIVATION OF INITIAL VELOCITY EQUATIONS 5

The use of the determinant method for complex enzyme mechanisms
is time-consuming because of the stepwise expansion and the large
number of positive and negative terms that must be canceled. It is quite
useful, however, in computer-assisted derivation of rate equations (cf.
Chapter [5] by Fromm. in Volume §3).

THE KING AND ALTMAN METHOD

King and Altman* developed a schematic approach for deriving
steady-state rate equations, which has contributed to the advance of en-
zyme kinetics. The first step of this method is to draw an enclosed geo-
metric figure with each enzyme form as one of the corners. Equation (5),
for instance, can be rewritten as:

The second step is to draw all the possible patterns that connect all the en-
zyme species without forming a:loop. For a mechanism with n enzyme
species, or a figure with n corners, each pattern should contain n — 1
lines. The number of valid patterns for any single-loop mechanism is
equal to the number of enzyme forms. Thus, there are three patterns for
the triangle shown above:

The determinant for a given enzyme spécies is obtained as the summation
of the product of the rate constants and concentration factors associated
with all the branches in the patterns leading toward this particular enzyme
species. The same patterns are used for each species, albeit the direction
in which they are read will vary. However, when an irreversible step is
present, e.g., the EP — E step, some patterns become invalid for certain
enzyme forms.

R —~————
= -
St x/ o

koks, + haks + Rogkog

"

*E. L. King and C. Altman, J. Phys. Chem. 60, 1375 (1956).



