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Preface

While electromagnetic interactions were first used to probe the structure of
elementary particles more than 20 years ago, their importance has only
become fully evident in the last 10 years. In the resonance region, photo-
production experiments have provided clear evidence for simple quark
model ideas, and confirmed the Melosh-transformed SU (6)w as a relevant
symmetry classification. At higher energies, their most striking feature is
their similarity to hadron-induced reactions, and they have provided fresh
insight into the ideas developed to explain strong-interaction physics. New
dimensions are added by taking the photon off mass shell, both in the
spacelike region, where the development of high-energy electron and
muon beams has led to the discovery and study of scaling and the intro-
duction of ‘“‘partons,” and even more dramatically in the timelike region,
where the development of high-energy electron—positron storage rings has
led to the exciting discoveries of the last four years.

In view of the immense interest stimulated by these developments, an
extensive review of our present state of knowledge is both timely and
useful. Because of the very wide range of the subject, a cooperative
venture presents itself as the most suitable format and is the one we have
adopted here. The emphasis throughout is primarily, but not entirely, on
phenomenology, concentrating on describing the main features of the
experimental data and on the theoretical ideas used directly in their inter-
pretation. As such we hope ‘that it will be of interest and of use to all
practicing physicists in the field of elementary particles, including graduate
students.

The work is in two volumes. The first deals with photoproduction and
electroproduction in the resonance region and at medium energy, treating
mainly two-body and quasi-two-body final states. The present volume first
considers multiparticle production and inclusive reactions, and then goes
on to deep inelastic scattering and electron—positron annihilation. In addi- .
tion, the Televant aspects of current algebra are covered, and photo-
processes on nuclei are discussed in depth.

vii
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We are deeply indebted to the many authors who have contributed to
this work. Their adherence to the proposed guidelines greatly eased the
problems of editing, and contributed significantly towards achieving a
balanced presentation.

We would like to thank Mrs. S. A. Lowndes of Daresbury Laboratory
for her invaluable assistance in the technical editing of the articles in both
this and the companion volume.

Manchester, 1978 A. Donnachie
G. Shaw
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ot & ot 1
Many-Body Processes

G. Wolf
‘and
P. Soding

1. Introduction

This chapter will be concerned with the many multibody channels induced
by collisions of real and virtual photons with target nucleons. One would
like to be able to trace in detail the way in which all the individual channels
manage to arrange themselves into the striking pattern presented by the
total cross section, particularly in the deep-inelastic region. Such a
complete decomposition is not yet feasible, and we must restrict ourselves
to a discussion of more global features like multiplicities, prong cross
sections, and diffractive vs. nondiffractive processes. These can be
compared with the corresponding features in completely hadronic reac-
tions on the one hand, and those in other current-induced reactions like
neutrino-nucleon and e”e” processes on the other. In addition we will
discuss a few individual many-body channels that are of special interest,
such as diffractive processes in electroproduction and channels with strong
contact amplitudes. We start by recalling the most important properties of
the total cross sections.

G. Wolf and P. Séding « Déutsches Elektronen-Synchrotron DESY, Hamburg, Germany
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2 G. Wolf and P. Soding

2. Global Properties

2.1. 0. for Real Photons

Measurements of the total cross sections of photons on protons and
deuterons have been made up to a photon laboratory energy v = 38 GeV.
Compilations of the measured val?es are shown in Fig. 1. Above  the
s-channel resonance region the data can be fitted by (Caldwell et al 1973,
Belousov et al., 1975)

Tio(yp) = (99.8 + 1.6ub + (57.0+ 3.0)r " *ub GeV'"?

(2.1)
Oiol(¥P) — Tiolyn) = (14.5 £ 1.9)0 b GeV'/?

These cross sections show a close similarity to those of purely hadronic
processes, as expected in the simple vector-dominance picture. If we

Photon energy in GeV
05 1.0 5 10 20 30

T T T T j

500 -

wl ! ]
300- 1
200} 55 O ]
| . .J

CROSS SECTION (pb) .

4ot
300+
2001
100}
05 P 3 L 5 678

Total center of mass energy in GeV

Fig. 1. Total yp (top) and yn (bottom) cross sections (as compiled by the Particle Data
Group, 1974), compared with the cross section o(7°p) = 3 [Two(7 P)+ Tro(7 P)I.



Many-Body Processes ) 3

compare oo (yp) with o1o(m°p) (see the curve in Fig. 1) we find that after
scaling by a factor 1/235 they are practically identical at all s out to the
highest energies measured, except in the region near (s)'/*=1.5GeV, to
which we will return for a detailed discussion in Section 5.

In termg of the leading #-channel poles for forward Compton scatter-
ing we have

4L Twot(yp) ~Im Tp+1Im Ty +1Im T4, : (2.3)

T

4L'a'.m('yn)~ Im Tp+Im Ty —Im Ta, (2.4)
T

The determination of the A, term from the experimental data is strongly
affected by corrections for shadowing and Fermi motion in the deuteron.
The high-energy Serpukhov data agree with a vanishing A, term (Belousov
et al., 1975). Since in the vector-dominance framework the same 7-channel
amplitudes appear in Compton scattering and in forward vector meson
photoproduction, one can turn to photoproduction for more information.
In particular, @ production is sensitive to A, exchange since the A, couples
to pw but not to pp (Barker et al., 1974). We have
1/2
Im Ta,(yN > yN) =2 (%) ImTa,(yN >wN) (2.5
fo/dm

A, exchange is expected to be the dominant contribution to the energy-
dependent part of the natural spin-parity exchange cross section for yp -
wp, which can be measured using transversely polarized incident photons.
One can also détermine the A, exchange contribution from the proton—
neutron difference of w photoproduction, which gives the I = 1 exchange
part in which the = and A, exchange contributions have then to be
separated. This can be done either on the basis of the s dependence, or by
observing the crossover in do/dt that should occur at —¢ ~ 0.3 (GeV/c)* as
Tp + T; interferes with Im Ta,,-which presumably has a zero at —t~
0.3 (GeV/c)’ (Harari, 1971). High-energy measurements of w production
on protons and deuterons by the Cornell-Rochester group indicate an A,
exchange forward amplitude of (8 +20)% (Behrend et al., 1971; Abram-
son et al., 1973). At present, then, the A, exchange in w production and in
oi(¥N) is not well determined; measurements at higher energies will be
necessary.

Although the main features of o (¥YN) look typically ‘“hadronic,”
there are features that may be more peculiar and possibly are connected
with the elementary local coupling of the photon. They are as follows:

(i) The enhancement in o:o.(yp) in the region around (s )2=1.5 GeV,
One might think that this indicates a resonance excited much more strongly
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by protons than by pions; note also that photons have an isoscalar part for
which no analogy with pions exists. However, the enhancement actually
comes from contact terms that arise from the usual Born graphs as a
consequence of gauge invariance. We will discuss these in Section 5.

(ii) A possible fixed pole at J = 0. Let us consider the Kramers—Kronig
dispersion relation for the spin-independent forward Compton scattering
amplitude,

2 © " '
o v , TtV
Refi(r)= —— +—2w2PL dv V,;'fy)z (2.6)

in which the low-energy Thomson term —a/m = f,(0) occurs. In Regge
_language such a constant term is a fixed pole with angular momentum J = 0
in the complex angular momentum plane. There has been much discussion
whether or not this fixed real pole term is cancelled at high energies by a
corresponding contribution from the integral (see, for example, Tait and
White, 1972). If the nucleon consists of elementary charged constituents
then one expects a fixed pole to survive at high energies (although not
necessarily of size —a/m), arising from the local interaction of the photon
with the constituents. If the measured o.(») can indeed be expressed as
Pomeron + Regge contributions as it seems, then the fixed pole in the real
part is not cancelled. This question is connected with the uncertainty of the
A, exchange term and can only be decided by measurements of o (yN)
out to higher energies. The fixed pole may be related to the contact
amplitudes mentioned before (Close er al., 1975).

(iii) The possible incompleteness of the shadowing of the interactions
of photons in nuclear matter. If real photons interact in nuclear matter like
hadrons as the simple vector-dominance (p, w, @) picture supposes, then
shadowing should be essentially complete if the longitudinal spread of the
virtual vector meson ““cloud” of the photon is

_ _L_ 2 25172 —1~_2_V —
(Az) = (A1) = 7 =[0 +mi) " —v] = 5> 20 ~4fm 2.7)

where my, = m, is the typical vector meson mass and A, the mean free path
of the vector mesons in nuclear matter. This is fulfilled for » > 6 GeV.
Although shadowing has been clearly seen, there is a tendency to find it to be
quantitatively less than the pure vector-dominance picture gives, both in
owi(¥A) and in do(yA - yA)/dt. Results from forward Compton scatter-
ing are shown in Fig. 2 (Criegee et al., 1975). Thus there may be some part
of the interaction that lacks shadowing, perhaps owing to a more local
nature of the interaction. Significant contributions from heavy vector states
indeed reduce the longitudinal spread of the interaction, but it is not yet
clear whether generalized vector dominance is able to describe the Q? -
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Be C Al Tii-c CU Ag Au
I
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Fig. 2. Shadowing effect in forward Compton scattering on nuclei [Criegee et al., 1975). The
error bars show statistical errors; there is an additional 7% normalization uncertainty. The
curves show the shadowing expected in the vector dominance model.

dependence of shadowing in nuclei correctly (Schildknecht, 1973; Taylor,
1975; Ditsas et al., 1975; Ditsas and Shaw, 1976).

2.2, o for Virtual Photons

We assume the validity of the one-photon exchange approximation,
and restrict our discussion to unpolarized targets.

The total virtual-photon-nucleon cross sections are directly connected
with the structure functions Fi(Q2 v)=mW,(Q% v) and F(Q% v)=
vW>(Q2, v). This connection arises from writing the differential cross
section for inclusive scattering of the lepton in the form

d’o _ dN¥ 2 ,
dQ% dvjs N 21+ )= go7 aypy loT(Q - V) HE0u(@ 0] (2.8)

where the first factor is the number of virtual transverse photons “radi-
ated” by one lepton per Q° and In » interval, and
2

5=[1+%"EZ%002]-1=[1+2(1+%) (tang)z]_l (2.9

is the ratio of longitudinal to transverse photon intensity (see the article by
Lyth in the companion volume). The subscripts L and T stand for longi-
tudinal (A, = 0) and transverse (A, = +1) photon polarization, respectively.
Note that neither the number of virtual photons nor the cross section for a
virtual projectile is an unambiguously defined concept; only their product is.
One can only start from the definitions of a flux of real photons, and the cross



