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Preface

In this book we provide readers with the fundamentals of the control volume finite
element method (CVFEM) for heat and fluid flow problems. The CVFEM comprises
interesting characteristics of both the finite volume and finite element methods. It com-
bines the flexibility of the finite element methods to discretize complex geometry with
the conservative formulation of the finite volume methods, in which variables can be
casily interpreted physically in terms of fluxes, forces, and sources. Most other avail-
able texts concentrate on solids problems. We applied this method for flow and heat
transfer. Application of CVFEM in different interesting fields such as nanofluid flow
and heat transfer, magnetohydrodynamics, ferrohydrodynamics, and porous media is
considered. Several examples have been prepared in these fields of science. This text
is suitable for senior undergraduate students, postgraduate students, engineers, and
scientists.

The first chapter of the book deals with the essential fundamentals of the CVFEM.
The necessary ingredients in numerical solutions are discussed. Chapter 2 deals with
solving Navier-Stokes equations (in vorticity stream function form) and energy equa-
tions. In this chapter two basic important problems are solved via the CVFEM. The
third chapter gives a complete account of the nanofluid hydrothermal behavior and
application of CVFEM to solve such problems. All the relevant differential equations
are derived from first principles. All three types of convection modes—forced, mixed,
and natural convection—are discussed in detail. Examples and comparisons are pro-
vided to support the accuracy and flexibility of the CVEFM. Examples start with a
single-phase model and then extend to a two-phase model.

The application of the CVEFM to heat and fluid flow in the presence of a magnetic
field are discussed in detail in Chapter 4. Two kinds of magnetic fields are considered:
a constant magnetic field and a spatially variable magnetic ficld. Several examples
included in Chapter 4 give the reader a full account of the theory and practice associ-
ated with the CVFEM. Chapter 5 gives the procedures for solving equations of
flow and heat transfer in porous media. Some examples provide readers with an oppor-
tunity to learn about the effect of active parameters. A sample FORTRAN code for
advection-diffusion in lid-driven cavity geometry is presented in Appendix. Readers
will be able to extend this code and solve all of the examples within this book.

Mohsen Sheikholeslami Kandelousi
Davood Domairry Ganji
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Control volume finite
element method (CVFEM)

1.1 INTRODUCTION

Fluid flow has several applications in engineering and nature. Mathematically, real
flows are governed by a set of nonlinear partial differential equations in complex
geometry. So, suitable solutions can be obtained through numerical techniques such
as the finite difference method, the finite volume method (FVM), and the finite
element method (FEM). In the past decade the FEM has been developed for use
in the area of computational fluid dynamics; this method has now become a powerful
method to simulate complex geometry. However, the FVM is applied most in cal-
culating fluid flows. The control volume finite element method (CYFEM) combines
interesting characteristics from both the FVM and FEM. The CVFEM was presented
by Baliga and Patankar [1,2] using linear triangular finite elements and by Raw and
Schneider [3] using linear quadrilateral elements. Several authors have improved the
CVFEM from then to now. Raw et al. [4] applied a nine-nodded element to solve heat
conduction problems. Banaszek [5] compared the Galerkin and CVFEM methods in
diffusion problems using six-nodded and nine-nodded elements. Campos Silva et al.
[6] developed a computational program using nine-nodded finite elements based on a
control volume formulation to simulate two-dimensional transient, incompressible,
viscous fluid flows. Campos Silva and Moura [7] and Campos Silva [8] presented
results for fluid flow problems. The CVFEM combines the flexibility of FEMs to
discretize complex geometry with the conservative formulation of the FVMs, in
which the variables can be easily interpreted physically in terms of fluxes, forces,
and sources. Saabas and Baliga [9,10] referenced a list of several works related to
FVMs and CVFEMs. Voller [11] presented the application of CVFEM for fluids
and solids. Sheikholeslami et al. [12] studied the problem of natural convection
between a circular enclosure and a sinusoidal cylinder. They concluded that stream-
lines, isotherms, and the number, size, and formation of cells inside the enclosure
strongly depend on the Rayleigh number, values of amplitude, and the number of
undulations of the enclosure.

1.2 DISCRETIZATION: GRID, MESH, AND CLOUD

In general there are three ways to place node points into a domain [11].

Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method
© 2015 Elsevier Ltd. All rights reserved.
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CHAPTER 1 Control volume finite element method

1.2.1 GRID

A basic approach assigns the location of nodes using a structured grid where, in a
two-dimensional domain, the location of a node is uniquely specified by a row
and a column index (Fig. 1.1a). Although such a structured approach can lead to
convenient and efficient discrete equations, it lacks flexibility in accommodating
complex geometries or allowing for the local concentration of nodes in solution
regions of particular interest.

1.2.2 MESH

Geometric flexibility, usually at the expense of solution efficiency, can be added by
using an unstructured mesh. Figure 1.1b shows an unstructured mesh of triangular
elements. In two-dimensional domains triangular meshes are good selections
because they can tessellate any planar surface. Note, however, that other choices
of elements can be used in place of or in addition to triangular elements. The mesh
can be used to determine the placement of the nodes. A common choice is to place the
nodes at the vertices of the elements. In the case of triangles this allows for the

rowl
Grid row2
row3
row4
(a) coll col2 col3 col4

(c) ° ¢ o
FIGURE 1.1
Different forms of discretization [11], including a grid (a), mesh (b), and cloud (c).




1.3 Element and interpolation shape functions 3

approximation of a dependent variable over the element, by linear interpolation
between the vertex nodes. Higher-order approximations can be arrived by using more
nodes (e.g., placing nodes at midpoints) or alternative elements (e.g., quadrilaterals).
When considering an unstructured mesh recognizing the following is important:

1. The quality of the numerical solution obtained is critically dependent on the
mesh. For example, avoiding highly acute angles is a key quality requirement for
a mesh of triangular elements. The generation of appropriate meshes for a given
domain is a complex topic worthy of a monograph in its own right. Fortunately,
for two-dimensional problems in particular, there is a significant range of
commercial and free software that can be used to generate quality meshes.

2. The term unstructured is used to indicate a lack of a global structure that relates
the position of all the nodes in the domain. In practice, however, a local
structure—the region of support—Iisting the nodes connected to a given node i is
required. Establishing, storing, and using this local data structure is one of the
critical ingredients in using an unstructured mesh.

1.2.3 CLOUD

The most flexible discretization is to simply populate the domain with node points
that have no formal background grid or mesh connecting the nodes. Solution
approaches based on this “meshless” form of discretization create local and struc-
tures, usually based on a “cloud” of neighboring nodes that fall within a given length
scale of a given node i [13] (Fig. 1.1c).

1.3 ELEMENT AND INTERPOLATION SHAPE FUNCTIONS

A building block of discretization is the triangular element (Fig. 1.2). For linear tri-
angular elements the node points are placed at the vertices. In Fig. 1.2, the nodes,
moving in a counterclockwise direction, are labeled 1, 2, and 3. Values of the depen-
dent variable ¢ are calculated and stored at these node points.

In this way, values at an arbitrary point (x, y) within the element can be approx-
imated with linear interpolation

¢p~ax+by+c, (1.1)
where the constant coefficients a, b, and ¢ satisfy the nodal relationships
¢i=ax;+byi+c, i=1,2,3. (1.2)

Equation (1.1) can be more conveniently written in terms of the shape function
N,, N2, and N3, where

1 At node i
Ni(x,y) = . (1.3)
0 At all points on side opposite node i
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FIGURE 1.2
An element indicating the areas used in shape function definitions [11].

3
ZM(.\*, y)=1 At every point in the element (1.4)
i=1
such that, over the element the continuous unknown field can be expressed as the
linear combination of the values at nodes i=1,2,3:

3
d(x.y) =) Ni(x.y)¢;- (1.5)
i=1

With linear triangular elements a straightforward geometric derivation for the shape
functions can be obtained. With reference to Fig. 1.2, observe that the area of the
element is given by

B 1 1 an
AP =211 x y

£ 1 x1 »n

1
2

[(x2y3 —x3y2) —x1(y3 —y2) + y1(x3 — x13)] (1.6)

and the area of the subelements with vertices at points (p,2,3), (p,3,1),and (p, 1,2),
where p is an arbitrary and variable point in the element, are given by

APB = [(x2y3 —x3y2) — X%p(¥3 = y2) +¥p( X3 — X2)]
AP = [(x3y1 —x1y3) —xp(y1 —y3) +¥p (1 —x3)] . (1.7)
AR = [(Xl)’z —x291) =% (y2 = y1) +¥p(x2 —xl)]
Based on these definitions, it follows that the shape functions are given by
N1 =APBJA'B, Ny =AP3 JA'B, Ny =AP12/A12, (1.8)

Note that, when point p coincides with node i (1,2,0r3), the shape function N;=1,
and when point p is anywhere on the element side opposite node 7, the associated
subelement area is zero, and, through Eq. (1.8), the shape function N;=0. Hence



1.4 Region of support and control volume b

the shape functions defined by Eq. (1.8) satisfy the required condition in Eq. (1.3).
Further, note that at any point p, the sum of the areas:

AP’B +Ap3l +AP12 :A123 (19)

is such that the shape functions at (x,,y,) sum to unity. Hence the shape functions
defined by Eq. (1.8) also satisfy the conditions in Eq. (1.4). For future reference,
it is worthwhile to note that the following constants are the derivatives of the shape
functions in Eq. (1.8) over the element:

N _ON1_ (y2—y3) 0Ny (xa—x3)
n=gp = A M= =
ON>  (y3—y2) ONy (%1 —x3)
iy  Npy=2N2_ 1.10
N2 ok 2A123 Nay dy DA123 W30
ON3  (y1—y2) ON3  (x2—x1)
NS,\'; = =—=

dx 2418 ' YT gy T A1

1.4 REGION OF SUPPORT AND CONTROL VOLUME

The local structure on the mesh in Fig. 1.1b is defined in terms of the region of
support—the list of nodes that share a common element with a given node i [11]
(Fig. 1.3). In this region of support, as illustrated in Fig. 1.3, a control volume is cre-
ated by joining the center of each element in the support to the midpoints of the

i5 i,6

Region of support Control volume
FIGURE 1.3

Region of support and control volume for node /in an unstructured mesh of linear
triangular elements [11].
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element sides that pass through node i. This creates a closed polygonal control vol-
ume with 2m sides (faces), where m is the number of elements in the support. Each
element contributes one-third of its area to the control volume area, and the volumes
from all the nodes tessellate the domain without overlapping.

1.5 DISCRETIZATION AND SOLUTION
1.5.1 STEADY-STATE ADVECTION-DIFFUSION WITH SOURCE TERMS

To illustrate a solution procedure using the CVFEM, one can consider the general
form of advection-diffusion equation for node i in integral form:

—J Qdv — l kV¢~ndA+J (v-n)pdA =0 (1.11)
Vv JA A

or point form
=V (kV¢)+V-(vd) —Q =0, (1.12)
which can be represented by the system of CVFEM discrete equations as:
[a,'+QC,‘+BC,'](bi :Za,_jqbsw +QB. +BB,~ (113)
j=1
In Eq. (1.13), the a’s are the coefficients, the index (i, j) indicates the jth node in the
support of node 7, the index S, ; provides the node number of the jth node in the sup-
port, the Bs account for boundary conditions, and the Qs for source terms. For the
selected triangular element shown in Fig. 1.4, this approximation (without consider-
ing the source term) leads to:
—(a/J( +a‘l‘)¢i + ((lé +ag)¢si,3 + (a; +ag)¢5i.4 =0 (1.14)
Using upwind method for advection coefficients identified by the superscript u,
are given by
af = max [gsy, 0] + max [gs, 0]
a4 = max [—g,0] (1.15)
a3 = max [—qu,O]

The diffusion coefficients, identified with the superscript &, are given by
dy = —kpiN LAY 5y + ke N1yAX p1 — kN1 AY o + kpaN1yAX f
@5 = —kp1NoAY 5y + ki NayAX £y — kpaNoeAY f + kpaNay AX p - (1.16)
@b = —kpiN3AY 5y +kpiNayAXp1 — kpaN3AY 5y + kpaNayAX 2

In Eq. (1.15), the volume flow across faces 1 and 2 in the direction of the outward
normal is
=v-nA|, =VIAY, —VIAY
qfi [fl ¥ BYr y BYf1 ‘ (1.17)
=V "A|f2 - V_’\'ZA}‘ﬂ - V?A.sz
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FIGURE 1.4
A sample triangular element and its corresponding control volume.

The value of the diffusivity at the midpoint of face 1 can be obtained as

5 5 2
kfl —[N1k1+N2k2+N3k3]ﬂ —Ek1+ﬁk2+ﬁk3 (1.18)
and at the midpoint of face 2 as
2 5
kez = [N1ky + Nokp + N3k, = kl + gl t ke (1.19)

The velocity component at the midpoint of face 1 is:

5 5
Wi=Z v +—ve+—v
X l X X2 1 X3

s (1.20)
a5 5 2
‘y —Ev‘yl + EV_YZ + EVYJ

On face 2 the velocity component is:

5 5
vfz —V —V,, +—V,

PINRETICRE The

5 (1.21)

Wttt 12 e

These values can be used to update the ith support coefficients using the following
equation:

a; :a,-+a’f
ai3=4a;3 +a§. (1.22)

k
aj4=aj4+ay
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In Eq. (1.16), moving counterclockwise around node i, the signed distances are:

— X3 X2 Xj —_ X2 X3 X
AZp=5—=-— —, AXp=——"+—+—
3 6 6 3 6 6 (1.23)
- Y3 Y2 N -+ Y2 .33 N
. L PR R - |
IN=3=% 6 r="3+6*%
the derivatives of the shape functions are:
Ny =N O2—¥s) N (;-:)
T e 2vee * TGy 2Vele
N> (y3—y) ON;  (x1—x3)
o - T e LV I . 2 1.24
S e dy  2veke el
No N2 _ (1 —Y) _ON; _(x—x)
T ox - avee TR T gy T gy

and the volume of the element is

pele (x2y3 —X3y2) +x1 (y2 — y3) +y1(x3 — x3)

. 1.25]
3 (1.25)

The obtained algebraic equations from the discretization procedure using CVFEM
are solved using the Gauss-Seidel method.

1.5.2 IMPLEMENTATION OF SOURCE TERMS AND
BOUNDARY CONDITIONS

The boundary conditions for the present problem can be enforced using B, and B,
as follows [14-16]:

Insulated boundary: Bg =0 and B¢, =0 (1.26)
Fixed value boundary: Bp = ¢, * 10'° and B¢, = 10" (1.27)
Fixed flux boundary: Bg =A; x¢" and Be,=0 (1.28)

where ¢yane is the prescribed value on the boundary and A is the length of the con-
trol volume surface on the boundary segment.

To provide a general treatment for boundary conditions, some preliminary cal-
culation of the boundary face areas associated with each node j in a given boundary
segment is required. Figure 1.5 shows a schematic of the kth (k= 3) boundary, indi-
cating the data structure. Assuming unit depth, the face area associated with any node
J of the boundary segment highlighted in Fig. 1.5 is given by

Upper,
Aj={ Upper;+Lower;, 2<j<ng;—1 (1.29)
Lower,, ,



