Biological Spectroscopy

lain D. Campbell and Raymond A. Dwek

Biological Spectroscopy

lain D. Campbell and Raymond A. Dwek

University of Oxford

The Benjamin/Cummings Publishing Company, Inc. Advanced Book Program

Menlo Park, California • Reading, Massachusetts London • Amsterdam • Don Mills, Ontario • Sydney umaharining Paninghis

ARTRITH

Sponsoring Editor Paul Elias

Production Jan deProsse, Pat Burner

Copy Edit Barbara Liguori

Cover Design Robin Gold

Book Design Richard Kharibian

Copyright © 1984 by the Benjamin/Cummings Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America. Published simultaneously in Canada.

Library of Congress Cataloging in Publication Data

Campbell, Iain D. Biological spectroscopy.

> (Biophysical techniques series) Bibliography: p. Includes index.

I. Spectrum analysis. 2. Biology—Technique.
I. Dwek, Raymond A. II. Title. III. Series.
OH324.9.S6C35 1984 574'.028 84-6232

ISBN 0-8053-1847-X

ISBN 0-8053-1849-6

ABCDEFGHIJ-HA-8987654

The Benjamin/Cummings Publishing Company, Inc.

2727 Sand Hill Road Menlo Park, California 94025

Preface

The molecules that make up the living cell continue to excite great interest. The methods available for investigating these molecules have improved dramatically in the last decade. Some of the most powerful new techniques involve the application of electromagnetic radiation. These techniques include nuclear magnetic resonance and visible spectra, which detect transitions between energy levels, and others such as microscopy, scattering, and diffraction. In this book the term *spectroscopy* is used to cover all these methods. The close relationships among these topics are rarely emphasized in textbooks; the reading level is often either too superficial or too detailed for most readers. This book tries to bring out the recurring concepts in this field and to steer a course between the specialist text and the introductory.

Our overall aim is to lead undergraduates, graduate students, and other readers to an appreciation of the current literature. Many people find the concepts involved in spectroscopy rather difficult, so our approach here is to use worked examples and problems to emphasize important points and to illustrate biological applications rather than complex mathematical derivations. Most chapters in this text deal with one particular technique and can thus be read independently of other chapters, but we have also included a central chapter on concepts and definitions and various appendices designed to give more information on difficult points.

We owe thanks to many people who have given advice and read chapters of the manuscript. Among these we should mention D. Ashford, P. Atkins, J. Boyd, S. Easterbrook-Smith, Z. Luz, M. Moody, R. Parekh, J. Paton, S. Perkins, R. Perutz, T. W. Rademacher, W. G. Richards, J. Seelig, R. J. Simpson, B. Sutton, and A. Watts. We also thank D. Kozlow, S. Hoeft, and F. Caduick for their skillful work on the diagrams.

The Linewillin of an Absorption Line Depends or Street Ontonion Street On Absorption of the Direction of the Direction of the Content of the

Preface v

Introduction

The Information Available from Spectroscopy 3

Spectroscopy: The Study of the Interaction of Electromagnetic Radiation with Matter

> What Is Electromagnetic Radiation? Et periorental Perupadens of politificated Spectrum 2 38

Polarization 7

Frequency, Wavelength, Energy, and Wavenumber 9

Sonasia dan menghamika Duternim Pelakan Left

What Is Matter?

Interparticle Forces and Energies 13 Energy Levels 14

Classification of Energies 15 states Lygnan & Isnothard V

Probing Different Energies with Different Ranges of Electromagnetic Radiation 15 mg and leading all

Population of Energy Levels 15

试读结束:需要全本请在线购买: www.ertongbook.wwm

The Interaction of Electromagnetic Radiation with Matter 18 Scattering 18 Scattering and Interference 19 Scattering and Refraction 21 Elastic and Inelastic Scattering 23 Absorption 24 Transition Probabilities and Selection Rules 25 Absorption Depends on the Populations of Energy Levels Absorption Spectra Depend on Concentration 27

Absorption Depends on the Populations of Energy Levels 27
Absorption Spectra Depend on Concentration 27
The Linewidth of an Absorption Line Depends on Lifetime 28
Absorption Spectra Depend on the Direction of the Transition
Dipole Moment 29

Optically Active Molecules Differentially Absorb Left- and Right-Circularly Polarized Radiation 29

Absorption Spectra Can Arise from the Reorientation of Magnetic Moments in a Magnetic Field 30

Emission 32

Fluorescence and Phosphorescence Are Two Particular Kinds of Spontaneous Emission 34

Problems 35

3 Infrared Spectroscopy

37

Overview 37

Introduction 38

Experimental Parameters of an Infrared Spectrum 38

Measurements of Infrared Spectra 39 Washington Management of Infrared Spectra

Conventional Double Beam Spectrometer 39

The Fourier Transform Method 40

Physical Basis of Infrared Spectra 41

Molecular Vibrations 41

The Morse Curve 43

Vibrational Energy Levels 43

Zero-Point Energy 44 1/2 drivers a read process and a process and a second seco

Vibrational Energy Level Transitions 44

61

Polyatomic Molecules 45 Number of Vibrations 45 Vibrational Spectra of Polyatomic Molecules Solvent Effects on Spectral Transitions Some Biological Examples 47 Infrared Spectra of Oriented Samples 52 Correlation of the Direction of the Transition Moment of Absorption Bands with Molecular Structure Polymer Spectra Can Be Complex Because of Interactions Between Electric Transition Dipoles 55 Problems 57 Ultraviolet and Visible Absorption Spectroscopy Overview 61 Introduction Parameters of Electronic Spectra Electronic Energy Levels Electronic Transitions: Selection Rules 66

Symmetry Considerations 66 Forbidden Transitions 66 Spin Considerations 66 The Time for an Electronic Transition **Absorption Range of Chromophores** Peptide Bonds and Amino Acids 69 Purine and Pyrimidine Bases in Nucleic Acids Highly Conjugated Systems Transition Metal Spectra 72 $d \rightarrow d$ Transitions Charge-Transfer Spectra

Solvent Effects on Spectra 74

Applications of Ultraviolet Spectra to Proteins 76

Properties Associated with the Direction of the Transition Dipole Moment and Interactions Between Them 82 Linear Dichroism of Oriented Samples 82 Determination of the Orientation of the Transition Dipole 82							
						Determining the Orientation of a Group 83	
						Resolving Ultraviolet Bands 83	
Exciton Splitting 85 Salama harman la internal account							
Hypochromism and Hyperchromism 87 87 87 10 10 10 10 10 10 10 10 10 10 10 10 10							
Problems # 88 Author 7 plural2 control and secretarily following all problems # 88 page 2 per 99							
luorescence							
Overview 91							
Introduction 92 yqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq							
Physical Picture 93							
Excitation and Emission Spectra 94							
Transition Probability and Lifetime 95							
Quantum Yield 96	Personalism of Extract						
Sulection Sules 66							
od strong on							
Natural Fluorophores and Fluorescent Probes 99 30 smoot enactions	Forbidden Tr						
	Spin Conside						
Environmental Effects on λ _{max} 102 to neclar to he							
Environmental Effects on Quantum Yield 103 Specific Quenching Processes 105	Nasorption Retrige of Ch						
Specific Quenching Processes 105 Environmental Effects on Lifetimes 106	Protide Bone						
an spire orapity, in some amprimite	Hams and the A						
Measurements of Molecular Dynamics 107 Ot amanual bottsac							
Dynamic Quenching: The Stern-Volmer Relationsh Fluorescence Depolarization 110	nip 108						
Fluorescence Depolarization 110 Steady-State Fluorescence Depolarization: Photographics of the Proposition of the Proposition 110							
Motional Depolarization 110	diri-symm)						
Time-Resolved Depolarization of Fluorescence							
Using Nanosecond Pulses 112	Approximate of Ultravio						

Determination of Distances Between Chromophores by Resonance-Energy Transfer 113

Calculation of Rg 116

Fluorescent Antibodies 119

Phosphorescence 120

Problems 122 combine most sourced manufaction manufaction of the

6 Nuclear Magnetic Resonance

127

Overview 127

Introduction 128

The Phenomenon 128

Magnetization 129

Measurement 130

The Spectral Parameters in NMR 133

Intensity 133

Chemical Shift 134

Spin-spin Coupling and Multiplet Structure 137

The T2 Relaxation Time and Linewidth 139

The T₁ Relaxation Time 141

What Causes Relaxation? 142

T₁ Relaxation Processes 142

T₂ Relaxation Processes 144

The Nuclear Overhauser Effect 144

Chemical Exchange 146

Paramagnetic Centers 148

Shift and Relaxation Probes 149

Applications of NMR in Biology 150

The Assignment Problem in NMR Studies of Macromolecules 151

Analytical Uses of NMR 156

Ligand Binding to Macromolecules 156

Ionization States and pH 159

Kinetics 162

Chemical Exchange Analysis 162

Concentration Versus Time 163

Structural Studies by NMR 164

Molecular Motion 167

The Observation of Powder Spectra from Membranes 169

Spatial Distribution 172

Problems 175

Elec

Electron Paramagnetic Resonance Spectroscopy

179

Overview 179

Introduction 180

The Resonance Condition 180

Measurement 181

Spectral Parameters 182

The Intensity 182

g-Value 182

Linewidths and Relaxation Times 183

Multiplet Structure in EPR Spectra 184

Hyperfine Structure 184

Spectral Anisotropy 186

Anisotropy of the g-Value 186

Anisotropy of the Nuclear Hyperfine Interaction A 189

The Time Scale for EPR 190

Different EPR Parameters May Have Different Time Scales 191

Spin Labels 193

Effect of Rate of Motion on Spin-Label Spectra 193

Anisotropic Spin-Label Motion 195

Quantitation of Amplitude of Motion: The Order Parameter 197

Lateral Diffusion in Membranes 199

Spin-Labeled Ligands Can Probe the Dimensions and Rigidity of Binding Sites 200 Spin-Label Hyperfine Splittings Are Sensitive to Polarity 202 Estimation of the Separation Between Two Paramagnetic Centers 202 Transition Metal Ions 204 Spin-Orbit Interaction: g-Values and Low Temperatures Hyperfine Structure 206 Zero-Field Splitting 207 Other Applications Spin Trapping 210 Problems 212 Scattering Overview 217 Introduction 217 The Observed Scattering from an Isolated Particle That Is Small Compared with the Wavelength 218 Molecular Polarizability: The Analogy with a Weight on a Spring The Wavelength Dependence of Scattering The Scattering from Many Particles Whose Dimensions Are Small Compared with \u03b1 220 Scattering from a Rigid Array 220 Solution Scattering and Information on Molecular Weight Scattering from Larger Particles A Vectorial Description of Scattering Plots to Determine R_G and \overline{M}_W The Guinier Plot 224 The Zimm Plot 225 The Determination of Molecular Shape 225 Scattering Using X-Rays and Neutrons

227

Contrast Variation in Neutron Scattering 228

The Effect of Scattering on Transmitted Light 230 2015 Turbidity 0231 Hensels and controlled an inversely beds Legal Refractive Index 232 The Frequency Dependence of the Refractive Index Dispersion 233 The Directional Properties of the Refractive Index: Birefringence 234 Dynamic or Quasi-Elastic Light Scattering 234 Spectrum Analyzer or Optical Mixing Spectroscopy 235 Intensity Fluctuation or Correlation Spectroscopy 237 Problems 238

Raman Scattering

Overview 239 Raman and Resonance Scattering **Physical Picture** 240 Selection Rule for Raman Scattering 242 Resonance Raman Scattering 243 Experimental Parameters 243 Position 243 Intensity 244 Polarization 244

Applications of Raman Spectroscopy 246 Conventional Raman Scattering 246 Resonance Raman Scattering 247 Pre-Resonance Raman Scattering 250

Problems 252

Optical Activity

255

Overview 255 **Optical Activity**

256

Optical Activity and Circularly Polarized Light 256
Parameters for Optical Activity 257 and application Transported Legislation
Measurement of ORD 259 Les no include the most of legs of
Measurement of CD 259 259 Across a First non-seaffied months and the months and the
The Frequency Dependence of ORD and CD 260
The Physical Basis of Optical Activity 261
Optically Active Chromophores 262
CD Spectra of Interacting Chromophores 264
The Use of CD to Determine Secondary Structure 265
Multicomponent Analysis 266
Empirical Uses of CD 269 W.L. and hardward a
Effects of Magnetic Fields on Optical Activity 270
Problems 273
• USA CARTES

Microscopy

279

Overview 279 Introduction 279 Factors That Affect Resolution 280 Resolving Power 281 Instrumentation 282 Lenses 282 PM mad nationallid to unpresent the till Magnification 283 The Light Microscope 284 The Electron Microscope 284 The Preparation of Samples for Microscopy Contrast in Microscopy 288 The Light Microscope 288 The Electron Microscope 290 Staining Procedures 290 The Light Microscope 290 The Electron Microscope 291

xviii

-							
C	3	m	4	0	n	41	
10	v	44	Α,	0	11	1	a

VII	Fourier Transforms and Convolution Functions 359				
VIII	Magnetic Properties of Matter 361				
IX X	Dipoles and the Interaction Between Them 362 The Interaction Between Dipoles 363 Two Parallel Dipoles 363 Two Dipoles in a General Conformation 363 Spectra of Interacting Dimers 364				
	aborded in managing binds of a specific Melipods and a specific specific Melipods				
-	eral References 369				
Solutions to Problems 373 Index 391	All workship in the control of the c				
	total Automotion Specification and Editoria and Statement Fee Freeling (SARS). 200				
	224107-900.				
	Profilations 345 Sample of the lander Oversity and 143				
	Ukry Machanise 251				

Contents

Methods Used to Depict 3-D Protein Structures 322

Classification of Proteins 324

Temperature Factors and Protein Mobility 325

The Validity of Protein Crystallography 326

Crystallography of Systems Other Than Proteins 326

Crystallography of Nucleotides and Polynucleotides 326

Problems 330

13 Other Spectroscopic Methods

333

Mössbauer Spectroscopy 333

Picosecond Spectroscopy 334

Photoacoustic Spectroscopy 336

Optical Detection of Magnetic Resonance 337

X-Ray Absorption Spectroscopy and Extended X-Ray Absorption Fine Structure (EXAFS) 338

Circular Polarization of the Luminescence (CPL) 340

Atomic Spectroscopy 341

Appendixes

I Mathematical Functions 343

Complex Variables 343

Exponential and Trigonometric Functions 343

Vectors 344

II Oscillators 345

Simple Harmonic Oscillation 345

Damped and Forced Oscillations 346

- III Waves and Their Superposition 349
- IV Wave Mechanics 351
- V Atomic and Molecular Orbitals 353
- VI Some Concepts of Crystal Field Theory 356

Advanced Techniques in Electron Microscopy 292

Underfocusing to Produce Phase Contrast 293

Optical Filtering Techniques 293

Image Reconstruction 294

Combination of Electron Diffraction with Microscopy 294

District of the second of the second

The Fluorescence Microscope 294

Problems 296

12 Diffraction

299

Overview 299

Introduction 300

Physical Principles of Diffraction Methods 300

Diffraction 300

Lattices 300

The Reciprocal Lattice 302

Fourier and Optical Transforms 302

Convolution 303

The Bragg Equation 305

Experimental Measurement of Diffraction 305

Sources of Radiation 305

The Sample in the Diffraction Experiment 306

Detection of the Diffraction Pattern 306

Interpretation 307

Direct Interpretation of Diffraction Data 307

Determination of Molecular Weight 307

The Symmetry of the Molecule 308

Diffraction Patterns from Fibers 309

Determination of Molecular Structure 311

Fourier Synthesis, Fourier Transformation, and Patterson Functions 311

The Phase Problem and Its Solution 314

Determination of Molecular Structure from ρ(x y z) 317

Refinement 318

Introduction

Most objects we see in everyday life are visible only because they reemit part of the light that falls on them from some source, such as the sun. Interpretation of this reflected or transmitted light can yield a wealth of information not only about the color and shape of an object but also about the atomic and molecular mechanisms involved when light interacts with the object.

Light is, in fact, a form of electromagnetic radiation and this book is concerned with the study of the interaction of electromagnetic waves with matter and how this can be used to extract information about biological molecules and cells.

Electromagnetic radiation covers an enormous range of wavelengths (energies, frequencies). The two extremes in this range are usually taken to be radio waves, with wavelengths around 10^{-1} m, and gamma rays, with wavelengths around 10^{-11} m. Visible light covers a very small range, $4-7 \times 10^{-7}$ m.

When light interacts with an object, we can normally see only reflected or transmitted radiation. Three phenomena that occur when electromagnetic radiation interacts with matter can be defined more precisely as scattering, (e.g., the sky is blue because fluctuating particles in the atmosphere scatter blue light more than red light); absorption, (e.g., red light absorbed by a piece of glass causes the transmitted light to appear blue); and emission, (e.g., a fluorescent dye may emit green light after absorbing blue light). Another result of the interaction of electromagnetic interaction with matter is photochemistry. This is obviously extremely important in biology (such as in vision and photosynthesis) but this aspect is not dealt with here.

We thus define spectroscopy as the study of the interaction of electromagnetic radiation with matter, excluding chemical effects. (For the purposes of this book, neutrons and electrons are considered to give rise to electromagnetic radiation, although this is not strictly correct; see Chapter 2.)

All the techniques described in this book involve (1) irradiation of a sample with some form of electromagnetic radiation; (2) measurement of the scattering, absorption, or emission in terms of some measured parameters (e.g., scattering intensity at some angle θ , extinction coefficient at a particular wavelength, or