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Introduction

The aim of the present article is to give a critical exposition of the theory
of the symmetry properties of rigid and nonrigid molecules. Despite the fact that
several accounts of the subject, both technical and didactic, are now available, and
despite the extensive discussion of nonrigid molecule symmetry that has been going
on since the classic papers of Hougen and Longuet-Higgins, there remains a need for
a unifying survey of the problem. Previous treatments have tended to emphasize one
or the other particular viewpoint at the expense of a broader view.

Renewed interest in the details of the symmetry classification of rotation-
vibration states of highly symmetric (octahedral) molecules has led to a reexam-—
ination of the relation between conventional point group operations and permutations
of identical nuclei in rigid molecules, together with a clarification of the
fundamental role of the Eckart constraints and associated Eckart frame. As is shown
below, analogous insights can also be obtained in the c;se of nonrigid molecule
symmetry, where the Eckart-Sayvetz conditions provide a natural generalization of
the Eckart constraints. .

The importance of particular definitions of the 'molecule-fixed' frame in the
theory of molecular symmetry can be better appreciated by examining their dﬁnical
origin. Chapter 1 is therefore devoted to a description of the derivation of the
usual Wilson-Howard-Watson form of the molecular Hamiltonian, together with its
generalization to nonrigid molecules. Particular attention is given to the :lntro—b
duction of molecular models and use of the Eckart and Eckart-Sayvetz constraints.
Some other approaches to nonrigid molecule dynamics are also examined.

After a brief review of the fundamental symmetries of the complete molecular
Hamiltonian, Chapter 2 gives a treatment of the symmetry properties of rigid mole-
cules based upon the static molecular model, following closely that of Louck and
Galbraith. Both the interpretation of feasible nuclear permutations and the invar-
iance group of the Eckart frame are discussed in detail. The important problem of a
correct definition of the parity of routiéul wavefunctions, and hence of molecular
systems, is also considered. The formal theory is illustrated by appiication to the

symmetry classification of states of diatomic molecules.
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Chapter 3 then develops a unified approach to the symmetry properties of
nonrigid molecules. The formalism is based explicitly upon the properties of the
semi-rigid molecular model, and is a straightforward generalization of the theory
given for rigid molecules in Chapter 2. A symmetry group of the semi-rigid model is
defined, and identified as the nonrigid molecule group. Induced transformations of
Born-Oppenheimer variables result in feasible permutations of nuclei. It is shown
that previous approaches can thereby be encompassed within a unified scheme.

Having dealt with fundamental matters concerning the nature of symmetry
operations in nonrigid molecules, attention is turned to the related technical
problem of handling the large symmetry groups involved. An investigation of the
structure of nonrigid molecule symmetzry groups is clearly important for the
practical implementation of the theory. The formalism developed in Chapter 3 is
well suited to the recognition and exploitation of nontrivial structure in nonrigid
molecule groups. As recognized éarly on by McIntosh and by Altmann, these groups
can often be writt-n_ns semi-direct products. The systematic theory of semi-direct
products is briefly reviewed in an appendix, while Chapter 4 applies the theory to
derive character tables for various nonrigid molecule groups. Recognition of semi-
direct product structure allows a lﬁra;ghtforward correlation to be made between the
irreducible representations of rigid and nonrigid molecule symmetry groups. Such
corralations can be exploited in the gen’ral theory of vibrgtions in nonrigid
molecules, but the details of this application have yet to be worked out.

The appendices develop in detail several important topics touched upon in the
text. A glossary of mathematical symbols and abbreviations has been included for

the convenience of the reader.
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Chapter 1. The Molecular Hamiltonian

We begin by considering the formulation of Hamiltonians for molecules both
rigid and nonrigid. Although we are primarily ;onccrnid with molecular symmetry
groups and their structure, an excursion into tﬁe theory of molecular dynamics is
necesaﬁry for several reasons. First of all, while it is true that notions of
molecular symmetry ultimately derive from the essential indistinguishability of
identical micro-particles (nuclei), which is a non-dynamical concept, {n practice
‘our point of view is of necessity dynamics dependent. Thus, the feasibility of a
particular transformation [1] - in other words, the extent to which a given symmetry
is manifest in a given experiment - is obviously entirely contingent upon the forces
acting within the molecule, for a fin;te experimental resolution/observation time.
Conversely, since it is not possible at present to set up ;nd solve nontrivial many-
particle (nuclear or molecular) problems using a set of coordinates displaying all
permutational symmetries in a simple fashion [2,3], the very way in which we
approach the dynamics is directly determined by intuitive ideas concerning feasi-
bility. One of the points we shall seek to emphasize throughout our work is the
close relation between descriptions of symmetry and dynamice. Again, a knowledge of
the transfornlcion from curtalian to molecular (Born-Oppenheimer) coordinates used
to rewrite the Hamiltonian is essential when we come to the important practical
problem of determining the‘induc;d action of permutations of identical nuclei upon
molecular wavefunctions.

The general problem of the derivation of the quantum-mechanical molecular
Hamiltonian operator expressed in Born-Oppenheimer coordinates has recently been
reviewed by Makushkin and Ulenikov [4] and we will not trace the history of this
subject here. For the details of the procedure, we have chosen to follow the recent
account by Sgrensen [5], which has, in our view, several attractive features. Thus,
Sg¢rensen's work emphasizes the fact that it is possible to develop a treatment of
nonrigid molecule (NRM) dynamics entirely analogous to that for quasi-rigid species,
by introducing the concept of the semi-rigid n&locullr model (§1.4). 1In additionm,

the stress laid upon the Eckart and Eckart-Sayvetz conditions reflects the import-



ance we shall ascribe to them in our discussions of molecular symmetry in Chapters 2
and 3. Hence, a careful discussion of the molecular Hamiltonian from this viewpoint
is useful preparation for our later work, in which we shall draw on many of the
ideas introduced here.

In this chapter, we are therefore concerned with éhe passage from the classical
expression for the molecular emergy in lab-fixed cartesian coordinates (§1.1) to the
Wilson-Howard-Watson form of the quantum-mechanical Hamiltonian (§1.3) and its
natural generalization to nonrigid systems (§1.4). A brief discussion of some other

apﬁroaches to the dynamics of highly nonrigid systems is also given (§1.5).

1.1 The Molecular Kinetic Energy

Classically, the total non-relativistic energy of an isolated molecule comsist-

ing of N nuclei and N electrons can be written

E =3 Z w8 K+ g w) E KK+ V_NN(-!‘G) + Ve (RGR®) + Vo (R%) 1.1

where we introduce the following notation: {l 43 i = x,y,2} 1is the laboratory
coordinate frame, right-handed by definition; 59 = position of nucleus a, charge Zys

mass m_, 1 < a < N, R = l

a i
€ _ 5 oF €
l<e<N, R =28, K

nucleus/electron and electron/electron coulomb potential energies, respectively and

1-R . R d/dt1 b :, R® = position of electron €, mass m,

d/dtlabki; Vyn» Vng and Vgg are the nucleus/nucleus,

there is a su?mation convention for repeated indices i,j etc.

OQur task noﬁ is to adbpt some suitable set of 'molecule-fixed' coordinates, to
express the molecular energy in terms of these new coofdinatea, to obtain a
Hamiltonian form for the energy, and finally to quantize the classical Hamiltonian
using a suitable quhntization rule (this is the traditional route: cf. [6], Chapter
11; note, however, that a more direct approach is taken in [4,7]).

The starting point is the coordinate transformation shown in Figure 1.1 [5,8]

Ri = R + C 1.2a

13 j(qx)

G L e
Rl Rl + cijrj 1.2b



Figure 1.1 The transformation from lab-fixed to
molecular (Born-Oppenheimer) coordinates



‘where R = (E m R +m Z R%) /(1 m + oN ) is the molecular centre of mass,
% a
R, = 2,°R, {qk, A= 1...3N—6} are 3N-6 independent internal coordinates, {f } is

~ ~

13 = &i-E are elements of

3

the 'molecule-fixed' orthonormal coordinate frame, and C
the direction-cosine matrix C.

Equatigﬂ%fil is a transformation of the electronic and puclear coordinates into
a ftamé: {gi} with origin at the molecular centre of mass, 'rotating with the
molecule' in some sense; the 3N components {r:} depend on the 3N-6 independent
generalized coordinates [qA}; The specification of a non-inertial frame carrying
the total orbital angular momentum.of the system is a major problem in the general
theory of collective motion in many-particle systems (cf. [2] and references .
therein). In the molecular case, however, it is often appropriate to define the
orientation of {ii} using the Eckart [9] or Eckart-Saxvetz [10] conditions, so
that we can refer to {gi} as the Eckart frame (§1.2).

Although the laboratory frame {éi} is by definition right-handed, the direc-
tion-cosine matrix C is allowed to have determinant +1 or -1, so that the sense of
the molecule-fixed frame can be opposite to that of the laboratory frame, i.e.,

left-handed. The matrix C is therefore an element of the orthogonal matrix group

0(3)
Ce 0(3) : cijcij' = sjj, N deg C=+% 1. 1.3
We set
= (det C)C' l.4a
where C' is a proper rotation matrix
C' € SO(3) , det C' = +1 1.4b

and is a functioﬁ of 3 independent parameters such as the Euler angles (Appendix 1).
The only consequence of C being an element of 0(3) for the derivation of the
Hamiltonian is that some care is nece;sary when projecting the components of axial
vectors, such as vector products, from the laboratory frame onto [éi} (as pointed
out by Husson [12]). The resulting factors of (det C) are however omitted in the

rest of this chapter for the sake of clarity.



The extra freedom in the rotational coordinates is motivated by several con-
siderations. First, as discussed in §1.2, the phenomenon of 'Eckart frame inver-
sion' [13] shows that when large-amplitude nuclear motions arg;;akgn into account
the Eckart frame does not necessarily have the same handedness as the laboratory
frame. Al;o, Louck [7] has shown that the 'internal' and 'external' angular momenta
appearing in the molecular problem can: be expressed directly in terms Af the direc~-
tion-cosine matrix C. Not only are these expressions independent of any specific
parametrization of C', but tﬁey are also invariant, as is the corresponding
Hamiltonian, under the inversion 7 :C + -C (cf. Appendix 2). As will be seen in
Chapter 2, the problem of determining the transformation properties of rotational
wavefunctions under improper rotations of axes is important for a detailed under-
standing of molecular symmetry. Using simple vector-coupling arguments (given in
Appendix 2), it is possible to write rotational wavefunctions as homogeneous poly-
nomials in the elements of the matrix C. There is then no ambiguity concerning
either the parity of rotational wavefunctions, and hence of molecular systems, or
the induced action of improper rotatioms.

Returning to the coordinate transformation 1.2, it should be emphasized that at
this point the 3N-6 independent internal coordinuteﬁ (qx} are entirely general in
nature, and do not necessarily describe displacements of nuclei from notional
‘equilibrium positions'. In fact, it is only required that the transformation 1.2
be invertible, and that variation of the {qi} should leave the nuclear centre of
nﬁas invariant [8].

In the work to follow we identify the molecular centre of mass R with the

nuclear centre of mass Bnuc

R ~ R = (Z‘muga)/i LI 1.5

~

This is a conventional approximation [18], uhieh has not however been made by Howard
and Moss [19], who have explicitly derived the small (mass-polarization or recoil)

correction terms arising from the fact that R:# g?“‘. We also ignore the motioms
of the electrons completel?. It is therefore assumed that the nuclei move in a

translation/rotation invariant potential field V(qk), corresponding to the



;po:ential energy surface' associated with a particular electronic state. This is
the viewpoint of the conventional Born-Oppenheimer approximation [20, 21], and means
that the Hamiltonian we shall derive should be regarded as an effective molecular
WItonian correspohding to a given electronic state [22,23].

We shall not be particularly concerned with the details of quantizing the
molecular Hamiltonian [7, 24-26] or of obtaining hermitian operators [27], and so
work mainly within the framework of classical mechanics.

From equation 1.2, the velocity of nucleus a is

1
ar
d/dt, , R = d/dt, . R+ wAr® + § T q, 1.6
where the angular velocity vector -w is defined by
d/de, £, = m/\g1 1.7
so that
1 :
wATr =wAf r, . 1.8
ok ~"21%

The sense of the vector product is determined in the lab frame, and

g/\ = (f Afk)mjrk = (det C)M1 1jk 5 k 1.9
with wjésj-g. 1.10
Defining the 3N-dimensional velocity vector
(vl,vz,...,v3N) = (ﬁ ky ﬁz,mx.wy,w 'ql""’q3N—6) 1.11
we can write - 3N N
5E vzl E'a,\avv = % Z‘-itai,vvv 133

where the transformation coefficients [tai’v] form-a 3N by 3N matrix t. In detaill,

from 1,6 the t-vettors are

~

Translation 't«a.,'!i = 51 i=1xv,z 1.13a
Rotation £a,Ri = (gil\ £°) “ i =x,y,2 1.13b

Internal t . =2ar*/aq, . 1.13¢
A 0% X

~a



The nuclear kinetic energy is then

o ga _
21T Zmaki ki Y | RpiVyVyn 1.14
a v,V .
with the matrix
Kovr = ) musn,v : Eu,v' L33
i.e., K=tmt ®m = mass matrix. 1.16

In the assumed absence of nuclear velocity dependent potentials, we introduce
generalized momenta and 'quasi-momenta' in the usual fashion (recall that the’
components of the angular velocity vector are not conjugate to any coordinates = the
relation between the angular velocities and the time derivatives of, for example,

the Euler angles, is non-integrable [29])

P, = 3T/dv = \2)' LI A 1.17
and obtain 2T = z vav 1.18
v

which is the form-invariant expression for the kinetic energy. Defining the inverse
of K

¢:=x! 1.19

we have v, = g' G Py | 1.20

which yields the Hamiltonian form

2t =] G, BR, . L.21

At this point it is possible to 'quantize' the classical molecular
Hamiltonian. In essence, this involves using the formula for the 3N-dimensional
Laplace-Beltraml operator in generalized coordinates (corresponding to the nuclear
kinetic energy) expressed in terms of the elements of the matrix G appearing in
1.21 - this is known as the Podolsky [24] quantization procedure. Careful attention
has to be given to problems concerning volume elements for integration of

wavefunctions, and the presence of quasi-momenta in 1.21 [27].



To sum up, the kinetic énergy 1.21 is obtained in 3 steps [5]:
a) Form the elements of the matrix [t] ;s functions ‘of the generalized
coordinates {qx) (1.13).
b) Multiply matrices to obtain K (1.16).

c) Invert K to obtain the important matrix G (1.19).

It is the last operation of inversion that is difficult to perform explicitly, since
K is, in general, q-dependent (although see [44]).
In the light of this, Sgrensen has suggested the following procedure involving

momentum transformation:

a') Obtain the expression for the nuclear momentum

-

>u- u‘_' = ™
PPeoamof =] B =TRs ot 1.22
v v
"b') Write the nuclear kinetic energy as
: -1
2T = § m g“-g“ 2' I 8 A 1.23
a w
where the G-matrix is now given directly in terms of the s-vectors as
=]
) "o et Bre 124

As the notation suggests, this is a direct generalization of the method used to
obtain the vibrational kinetic energy in the Wilson FG-formalism [6]; however, here
it is possible to deal with all nuclear degrees of freedom, not just the vibra-
‘tional, together on the same footing, in the absence of any restriction to 'small-

amplitude’ motions.

Noting that
=7 8= V7 P8 et v, 1.25
~ ~ vV ~M,a ~a,vty
a av,v
we must have from 1.18
o e’ En,v' = Syur . 1o 28

i.e., the coefficients [sv aj] form a 3N by 3N matrix which is the left-inverse
»

qf t. The orthogonality relations 1.26 are very important .in the development of the
Ham’ltonian. Thus, from the expressions for the translational and rotational t-

vectors we note that

z IR 0 - for all A,i 1.27a



implies
] 5, =0 for all 2 1.27b
= "X.G ~

and that p

. E 5o Samt ™ 0 for all A,i 1.28a

implies
I A =0 for all ) 1.28b
a ’ J

The relations 1.27b and 1.28b are generalized Malhiot-Ferigle conditioms [5,8,29],

and show that the internal coordinates ' {qx} are invariant under translations and

rotations of the nuclear configuration [5"), as required [8,30].

The outstanding problem is the evaluation of the s-vectors. From the relations

(cf. 1.12)
R, -'); 5140 ° ). 1.29a
=18, K 1.29b

it follows immediately that

Translation S14,0 " (lc/ll) L, 1.30a
Internal B !f'qx = £J aqxlax‘; 1.30b

where, for a geometrically-defined internal coordinate q) we can evaluate the
derivative (aqx/ax‘;) as a function of the instantaneous nuclear configuration

is obtained through use of

(l;]‘ In §1.2, a more convenient expression for 5.a
- R

rectilinear coordinates for rigid molecules.

How, then, to evaluate the rotational s-vectors g ? Consideration of the

Ri,a
orthogonality condition

I s Ti,a * Eqa =0 forall i 1.31
a .

together with 1.13¢ and -1.30a shows -that

I = (3r%/3q)) = 0 for all A. 1.32
a

However, as recognized by S¢remsen [5], this is just a differential comsequence of

the centre of mass condition (translational comstraint)

] mg®=0. 1.33
a



