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An Expanded System Method for the
Stochastic Dynamic Analysis

Jie Li J. B. Roberts

Abstract: By applying an orthogonal expansion technique in random space,
a general formulation for an expanded system method, suitable for the dynamic
analysis of linear multi-degree of freedom (MDOF ) stochastic structural
systems, is established. This can be used for various kinds of systems which
possess combinations of random mass, damping and stiffness parameters. The

proposed method is validated through an analysis of simulated data.

1 Introduction

The effect of uncertainty, with regard to material properties or structural
geometry, on the dynamic response of structures to time-varying excitation is of
major concern in the field of reliability design and in the probabilistic safety
assessment of many engineering structures. Recent advances in computer
technology have greatly enhanced the scope for work in this area and have
intensified research efforts towards developing efficient methods for analysing
the dynamic response of stochastic structural systems.

Previous studies, in the past two decades, have concentrated on the use of

either simulation methods >

or perturbation techniques” *'; these are two of
the major tools available for stochastic structural analysis. Because exact
solutions are impossible to obtain for most real engineering structures, the use
of simulation methods is usually regarded as the most practical approach for
design purposes. However, a basic problem with simulation is that it invariably
requires an extensive computation, which is often very expensive to implement.

On the other hand, perturbation methods usually suffer from problems with

Originally published in Earthquake Engineering and Engineering Vibration, 1996,16.34—42.
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regard to their accuracy and to their convergence, which may be exacerbated
when a dynamic response is sought. In particular, because of the effect of
secular terms, generated in first and second order solutions, the accuracy of
statistical results tends to deteriorate rapidly as time elapses”™ *',

In an attempt to avoid these difficulties alternative approaches, based on
orthogonal decompositions of the structural response, have been developed

[9, 10]

recently and applied to the analysis of both static and dynamic

systems-' 12,

Although the specific examples which have been considered so far
in the published literature have shown that a good agreement with simulation
estimates can be obtained, further work is required to establish and validate a
general methodology.

This paper focuses on the dynamic analysis of linear MDOF stochastic
structural systems responding to deterministic time-varying excitation. On the basis
of an orthogonal expansion technique in a multi-dimensiomal random space, a
general formulation is established, leading to an expanded system method. A
subjunctive structure technique is applied, akin to the normal finite element
method, which can be used to generate a basic matrix for the expanded system.
The general scheme developed here can be applied to various MDOF stochastic
sructural systems, possessing random mass, damping and stiffness properties. The

method is validated through a comparison with simulation results.

2  Transformation from a Random Field to Independent

Random Variables

Randomness in material properties, or in structural geometry, may be
modelled mathematically either in terms of a vector of independent random
variables or as a continuous random field. Recent research has shown that a
random field representation can be converted into a random vector
representation by discretizing the field; the mid-point, local averaging and
shape function methods offer three particular ways of achieving this
objectivel” '), The resulting vector of (in general) correlated random variables
can be further transformed into a vector of independent random variables
through a spectral decomposition of the covariance matrix.

As an alternative approach, a random field model can be transformed into
an independent random vector representation by means of the Karhumen-Loeve
decomposition. This leads to an integral equation which involves the eigenvalues

and eigenvectors of the correlation kernel which specifies the random field""’,

2
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By means of a discrete integration rule, or through the use a Galerkin-type
approximation, the solution of the integral equation can be converted into a
matrix eigenvalue problem. This leads to a result which is equivalent to that
found by the two-step method described above. Thus, here only the two-step
method is discussed, and local averaging is adopted as the discretization
method.

Let B(uw), u € Q, denote a multi-dimensional Gaussian random field
defined within the domain Q. The field is completely described by its mean
function, B, (u), the variance function ¢°(u) and the normalized covariance

function p(u, u’). B(uw) can be expressed as
B(u) = B,(w) + B, (w) (D

where B, (u) is a random field with zero mean and the same covariance function
as B(u).
If the domain @ is divided into N elements, the local average of the ith

element of the field can be defined as

v, = ij Bwdu, uée Q,; (2)
0,Ja,

i

where (2, is the volume of ith element.

The mean of v, is given by

Vo; — E{'U,} = LJ‘ B()(M)du’ u 6 Q, (3)
0;J)a,

i i

where E{v, } is an expectation operator. The covariance of the ith element and

the jth element is given by

1

R, = Cov(v;, v;) = ——
0.0Q;

J j s (o) olu,u')dudu’ 1)
a,Ja,

The local average values, v, now form a new vector, v which can be

written as
Vv = V()TLng Vo — {"Uo,} (5)
Here v, is a zero-mean random vector with a covariance matrix
R=[R,] (6)

the elements of which are defined by Eq. (4).
It is possible to use a spectral decomposition of the covariance matrix to

obtain an alternative to Eq. (5), in terms of independent random variables.

3
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V:VQ+Vb 7

VZI:@I \/(919 @2 «/(925 ttt (D;\' ’\/6;’\1]7 b:[b,] (8)

b, are independent standard random variables and §; and ®, are, respectively,
the eigenvalues and eigenvectors of R: The eigenvectors are normalized such
that @' @, = ¢, , where 0 is the Kronecker delta.

Using a subset, r<UN, of the terms in Eq. (6), corresponding to the largest
eigenvalues, the number of random variables describing the random field can be
reduced. Then N can be replaced by r in Eq. (7).

It is worth pointing out that the above description is for a continuous
system. On the other hand, for a discrete system which has been decomposed in
advance, by using a finite element mesh, it can be assumed that the random
variables (not necessarily Gaussian) in each element are independent each other
or have the characteristic of independent identical probability distributions in a
specific elements set. Both of these assumptions lead to an expression similar to

Eq. (7) but with a diagonal nominal variance matrix
V = diag(v, s Uazs "y Uy ) 9

where r is the number of independent random variables and v, is a nominal

variance of v; . The relationship between the nominal variance v, and the

aj
variance v, is decided by the distribution of random variables. For example,

when the distribution of random variables belongs to uniform distribution, there
exists v, = «/57)0.

In summary, there are two ways of describing the randomness of structural
parameters. Both of them lead to a model in terms of a set of independent
random variables. Thus, in the following parts of the paper, it is only necessary

to discuss stochastic structural systems with independent random variables.
3 The Dynamic Matrix

According to finite element methodology, the stiffness matrix of general

MDOF dynamic system can be written as
N i
K = ZT"FK?T" (10)

i=1

where N is the finite element number and T; is a position matrix which depends

4
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on the structural form. K/ is the ith element stiffness matrix.

When the elastic modulus, E, or resistance moment of a section, EI, is
considered as a random field, the independent random variable’s expression
such as Eq. (7) can be derived based on the discussion in former section. Then,
by substituting these expressions into Eq. (10), the random stiffness matrix of

stochastic MDOF system is of the form

N,

K=K, + > Kb, (1D
j=1

where N, is the number of independent stiffness parameters and
N N
By = D, TIRST,, Ky = 3 TF (B, IT, (12)
i=1 =1

K{; and K, can be calculated for specific structures.
The random mass matrix, M, and the random damping matrix, C, can be
expressed in a similar form to Eq. (11), with N,, and N. as the number of

independent mass and damping parameters, respectively.

4 Dynamic Response of Stochastic Structures

The general equation of motion for a linear MDOF stochastic dynamic

system is as follows:
MY +CY+KY = F(1) (13)

Here F(r) is deterministic external load vector and Y is the displacement

response vector.

Let
M., s<N,, j=s
A, =1 " ’ (14)
0’ S>Nm
0, s << N,
A,=.C, N,<s<N,+N.,, j=s—N, (15)
0, s >N, + N,
0, s <N, +N.
A, =] B (16)
lKj, s>N,+N,, j=s—(N,—N»D
and
A, =M,, A,=6C,, A, =K, 17
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Then Eq. (13) can be written as

R R R
(Ao + 23400 )Y+ (A + DJALL )Y + (Aw + DJALb, )Y = F(1)
s=1 s=1 s=1

(18)
where R = N,, + N, + N,.

From the viewpoint of functional analysis, the dynamic response of a
stochastic structural system can be regarded as a locus in the space of the
random variables. Let H denote a Hilbert space spanned by a set of the basic

functions { H; (b) };_,. Then the locus of Y can be expanded as

Y(b, t) = >)X,(t)H,(b) (19)
i=1

where X; (¢) is a deterministic time process vector.

For the multi-dimensional random space H, it is convenient to define

R
H,(b) = [[H. (b)) (20)
s=1
where H, (b)) isa polynomial in the variables b, of degree [,., [, = 0,1,2---.

For different probability distribution functions of random variables, the
polynomial choice is different. For example, weighted Hermite polynomials
correspond to the standard normal distribution, Legendre polynomials to a
uniform distribution, and so on.

The orthogonality of H,; (b,) can be expressed by

1, When /, = k&,

R R
E H . H . — 21
{H ,\(bh).\]lTl k\(b\)} {O, others zb

The solution of the stochastic structural system Eq. (18), say, Y, now can

be approximated by the following series

R
Ybot) = D) Xy, (O]]H, (b)) (22)
0 ls < Ny =1

1<s<R

where N, is the expanded order for the variables b,, X 1,1, (t) are
deterministic functions of time corresponding to X; (¢) in Eq. (19).

Substituting Eq. (22) into Eq. (18), multiplying the resulting equation by
R

HHk\(b») and then taking an expectation with respect to the random
s=1

variables, b, we obtain the following equations:

The global equation is
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AX+AX+AX=F() (23)

and the corresponding elements expression is

MN

Z[(am)l.px'/) + (a()l.px./) + (ak)[.pxllj = f[(t) (24)

p=1

where, omitting the indices m,c, %,

R
a,, = A0, + ZA.\-()’lzﬁl 317;‘./, + B}c\al.p + a’k"\lal\;‘.p)
s=1

O<k, <N (25)
R
MN = J[(N.+D (26)
=1
R R
I=1+4+ >k, J] (N;+D 27)
§=1 j=s+1
1, s =R

] (Ney +#Ds s <R

j=

g, = J’H (28)
|

R
fi=Fiipr, = FO ] 60, (29)
s=1

a»P and y, appearing in Eq. (25), come from the following recurrence relation

for the orthogonal polynomials
be/\ (b,) = azAH/\ﬂ(bx) + BzAH/\ b))+ 7/\Hz;1(b.\~) (30)

It is worth pointing out that the above formulae differ completely from other
corresponding results in the literature™'' '*',

Obviously, Eq. (23) is similar to Eq. (18), but the order of the system has
been expanded. The dynamic system governed by Eq. (23) is called here the
“expanded-order system” for the original stochastic system. The method of
solving the stochastic structural system, using Eqgs. (23) to (29), is referred to
as the expanded system method.

According to Eq. (22), the expansion order for the different variables may
be varied. An analysis of the expanded matricesA,, , A, and A, shows that, for
the same order of expansion, the symmetric property of the matrices is
retained. However, if the orders in the expansion vary, symmetry may lost in
some cases.

If the initial conditions for Eq. (18) are taken asY(0) =Y, , Y(0) =Y,,

where Y, andY, are deterministic vectors, then the initial conditions for Eq. (23)

7
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are

R R
X[(O) - Xklkz'”kR (O) — YO]‘—I&O/@X s X/(O) - Xk1k2~-~kR(O) :Y.()Ha()k\

s=1 s=1

3D

The expanded system Eq. (23), with initial conditions given by Eq. (31), can be
solved by using any of the analytical methods available for deterministic
dynamic structhral systems. Once the solutions of Eq. (21)have been obtained,
the mean and variance of the stochastic system response can be calculated by
using the following formulae.

E(Y(£)} = X000 (2), VarlY(£)} = D) Xi iy (X, yer, (2) (32)
1

Ly

ININ

< Ny
R

A
AUN

12
The statistics of other kinds of response, such as velocity, acceleration, etc.

can also be obtained by using expressions analogous to Eqs. (32).
S Examples

To verify the validity of the proposed method, a number of specific
examples have been analysed. As an example, results for a two degree-of-
freedom system with random mass and stiffness properties are presented here.
The damping variability is not considered here because its effect is negligible for
a nomrresonant response. The system was assumed to be a shear-type story

structure with the following element parameters

m, = m, =1, £k, =k, =39.48, §, :8,,,220.1, Ok, = O =10, 2

1 2

Here ¢ is defined as ratio of the variance to the mean of the parameters. The
probability distribution of random variables is assumed to be normal, and the
damping coefficient of the system is 0. 05.

Two kinds of input were chosen. One was a sinusoidal load acting on each

mass element with the form
f](t):fz([):Sin(w.v[)a w~:3.1416

The another was an irregular ground motion input to the system. Actually, an
earthquake record (the El Centro NS record) was selected for the latter input.
First and fourth order expansions were chosen for forming the expanded
system. At the same time, corresponding results were also generated directly

from simulated data using 5 000 samples in each case. Fig. 1 and Fig. 2 depict the

8
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mean response and variance response results for the case of a sinusoidal force. It
can be seen that a first order expansion is sufficient for estimating the mean
response of the system. However, an accurate estimation of the response variance
may need an expanded system of higher order. Similar trends may be observed in

the case of the irregular base motion excitation input (Fig. 3 and Fig. 4).

0.2

SN NV WP

7(s)

Fig. 1 Mean response Comparison between the expanded order system method and
simulation method: Sine wave load. (Circle points for 5 000 simulations, Solid

line for 4th orders expansion and dashed line for 1st order expansion)

0.12
&g 0.08 !
— I
= }

0.04 ﬁ%q

0.00 M )

0 1 2 3 4 5
1(s)

Fig. 2 Variance, response Comparison between the expanded order system method
and simulation method: Sine wave load. (Circle points for 5 000 simulations,

Solid line for 4th orders expansion and dashed line for 1st order expansion)
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-, W T
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Fig. 3 Mean response Comparison between the expanded order system method and
simulation method: Earthquake input. (Circle points for 5 000 simulations,

Solid line for 4th orders expansion and dashed line for 1st order expansion)
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Fig.4 Variance response Comparison between the expanded order system method
and simulation method: FEarthquake input. ( Circle points for 5000
simulations, Solid line for 4th orders expansion and dashed line for 1st order

expansion)

6 Conclusions

An expanded system method has been presented for the dynamic analysis of
stochastic strucure. The general formulation established in the paper can be
used for various MDOF stochastic structural systems which possess random
mass, damping or stiffness parameters. On the basis of the discussion in section
2, the proposed method can be used for both continuous systems and discrete
systems. For the former case, a two-step method is suggested for converting the
random field into a representation in terms of indepenent random variables.
The proposed scheme is believed to afford a new approach to probability design

or safety assessment of complex engineering structures.
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Stochastic Structural System ldentification
Part 1: Mean Parameter Estimation

Jie Li J. B. Roberts

Abstract; This paper presents a new scheme for the estimation of the mean
values of parameters in multi-degree-of-freedom structural systems. It is based
on a combination of a differential operator transform of the measured data with
the extended Kalman filter method. The proposed method can deal with a wide
variety of estimation problems including those which are of the nonlinear-in-
the parameter type. On combining this method with a technique for estimating
the variance of the parameters, discussed detailly in part two of this paper, a
complete stochastic structural system identification technique can be
formulated. Results from simulation studies indicate that the new method can
yield reliable estimates of the system parameters even when the noise level in

the measurement records is significant.

1 Introduction

Current research on the identification of structural systems aims at
developing methods for estimating those parameters which represent the main
structural properties, in some sense. Inherent structural uncertainties are
usually ignored. However, in the safety assessment of many engineering
structures, randomness of various structural properties can be a crucial factor,
especially when dynamic responses are of concern. In these circumstances it is
necessary to incorporate probabilistic information on interior structural
properties into an overall model and to identify the statistics of the parameters,
using both the model and available experimental data. The most important
statistics are the means and variances of the parameters.

This paper focuses on the estimation of the means of parameters in multi-

Originally published in Computational Mechanics.1999,24:206—210.
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