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Preface

These Lecture Notes were prepared from notes taken by M. Ratliff
and K. Spackman of lectures given at the University of Colorado.

I have tried to present a proof as simple as possible of Weil's
theorem on curves over finite fields. The notions of "simple" or
"elementary" have different interpretations, but I believe that
for a reader who is unfamiliar with algebraic geometry, perhaps
even with algebraic functions in one variable, the simplest method
is the one which originated with Stepanov. Hence it is this method
which I follow.

The length of these Notes is perhaps shocking. However, it should
be noted that only Chapters I and III deal with Weil's theorem.
Furthermore, the style is (I believe) leisurely, and several results
are proved in more than one way. I start in Chapter I with the
simplest case, i.e., with curves yd = f£(x) . At first I do the
simplest subcase, i.e., the case when the field is the prime field and
when d 1is coprime to the degree of f . This special case is now so
easy that it could be presented to undergraduates. The general equation
ka,y) = 0 1is taken up only in Chapter III, but a reader in a hurry
could start there. The second chapter, on character sums and expo-
nential sums, is included at such an early stage because of the
many applications in number theory. Chapters IV, V and VI deal with

equations in an arbitrary number of variables.

Possible sequences are chapters
I by itself, or

I, III for Weil's theorem, or



v

I1.1,III for a reader who is in a hurry, or

I, II for character sums and exponential sums, or
&, 1i; 1V, or

I, I1I, IV.3 and V .

Originally I had planned to include Bombieri's version of the
Stepanov method. I did include it in my lectures at the University of
Colorado, but I first had to prove the Riemann-Roch Theorem and basic
properties of the zeta function of a curve. A proof of these basic
properties in the Lecture Notes would have made these unduly long,
while their omission would have made the Bombieri version not self com-

plete. Hence I decided after some hesitation to exclude this version

from the Notes.

Recently Deligne proved far reaching generalizations of Weil's
theorem to non-singular equations in several variables, thereby con-
firming conjectures of Weil. It is to be noted, however, that Deligne's
proof rests on an assertion of Grothendieck concerning a certain fixed
point theorem. To the best of my knowledge, a proof of this fixed
point theorem has not appeared in print yet. It is perhaps needless
to say that at present there is no elementary approach to such a
generalization of Weil's theorem. But it is to be hoped that some day
such an approach will become available, at least for those cases which

are used most often in analytic number theory.

November, 1975 W. M. Schmidt



Notation

F’ is the multiplicative group of a field F .

F is the algebraic closure of a field F .

F° is the product F x ... X F , i.e., the set of n-tuples (xl,...,xn)
with x, &F (Ais1) « D)

A denotes the degree of a field extension F, 2 F_ .
) g

1 2
I denotes the trace and 9 the norm.

Fq will denote the finite field with q elements.

L}

will be the characteristic.
is the field of rational numbers,

the field of reals,

o e

the field of complex numbers,

~

the ring of (rational) integers.

1}

denotes isomorphism of fields or groups.

Quite often, x,y,z... will be elements which lie in a ground
field or are algebraic over a ground field, X,Y,Z,... will be
variables, i.e., will be algebraically independent over a ground field,
and % » Preee will be algebraic functions, i.e., they will be
algebraically dependent on some of X,Y,... . Thus f(xl,...,xn)
is a polynomial, and f(xl,...,xn) is the 'value of this polynomial at
(xl,...,xn) o

P(x) ~or - F(X) or HXY) " or F(X,9), or similar, will be the
field obtained by adjoining x or X or X,Y or X,9) to a ground
field F . Thus F(X) is the field of rational functions in a variable
X with coefficients in F . R[X] denotes the ring of polynomials in X

with coefficients in the ring R .



Vi

If a,b are in Z , we write alb (or a+b) if a does (or does
not) divide b . Occasionally we shall write d|q—1 instead of the
more proper notation d|(g-1) . Again, we shall write f(x)]g(x) if
the polynomial f£(X) divides g(X) . Further (£(X)) (or (£(X),g(X)) )
will be the ideal generated by f£(X) (or by £(X) and g(X))

lw| denotes the number of elements of a finite set ® . Given

sets A ¢ B , the set theoretic difference is denoted by B ~ A .

3
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Introduction
Gauss (1801) made an extensive study of quadratic congruences

modulo a prime p . He also obtained the number of solutions of the

cubic congruence

axa-byasl (mod p )
for primes p =3n+1 , and of the quartic congruence
4 4

8x = by =1 (mod p)
for primes p =4n+1 . He studied the congruence
axq-byzal (mod p )
for arbitrary primes p .
Artin (1924) considered the congruence y2 = f(x) (mod p) ,
where f(X) is a polynomial whose leading coefficient is not divisible

by p and which has no multiple factors modulo p , and made the

following conjecture: The number N of solutions satisfies

A

IN - p| s2/P if deg £ =3,

|N+1 - p| s 2,/p if deg £ =4 .

This conjecture was proved by Hagse (1936 b,c.). In fact, let F

be the finite field with q elements, and let N be the number of
solutions (x,y) ¢ qu of the equation y2 = f(x) , where £(X) is
a polynomial with coefficients in F‘1 and with distinct roots. Then

IN~-a| s2/9 if deg £ =3,

IN+1 -~ q| s 2,/q if deg £ =4 .

Suppose f(X,Y) is a polynomial of total degree d , with
coefficients in Fq and with N =zeros (x,y) with coordinates in
Fq . Suppose f(X,Y) 1is absolutely irreducible, i.e., irreducible

not only over Fq , but also over every algebralc extension thereof.



Weil (1940,1948&)* proved the famous theorem (the "Riemann Hypothesis
for Curves over Finite Fields'') that
(¢9] [N - a| =2¢/T + ¢ (@
where g is the "genus'" of the curve f(x,y) = 0 and where cl(d) is a
constant depending on d . It can be shown that g = %(d-l)(d—Z) , hence that
[N =a} = (-1(d-2)@ + ¢ (@) .

Weil's proof depends on algebraic geometry, in particular on Castelnuovo's
inequality. A somewhat simpler proof was given by Roquette (1953); see
also Lang (1961), Eichler (1963).

More recently, Stepanov (1969, 1970, 1971, 1972a, 1972b, 1974)
gave a new proof of special cascs of Weil's result which does not
depend on algebraic geometry, but which is related to Thue's (1908)
method in diophantine approximation. This method consists in the
construction of a polynomial in one variable with rather many zeros.
The construction is by the method of undetermined coefficients.

In particular, Stepanov proved that
(2) ¥ - a| = c,(a) /T
if f£(X,Y) is of some special type, for instance if

1x, 1 =¥ - 10

where d and the degree of f are coprime. Later Bombieri (1973)
and Schmidt proved (2) for absolutely irreducible £(X,Y) by the
Thue ~ Stepanov method. It follows from the theory of the zeta function
that (2) implies (1).

In these Lectures we shall prove (2) by the Stepanov method.

tThe 1940 paper is only an announcement.



I.

Equations yd = £(x) and yq—y = fix) .

References: Stepanov (1969, 1970, 1971, 1972a), Mitkin (1972),

§1.

Stark (1973).

Finite Fields (Galois fields).

Let F be any field. There is a smallest subfield k € F (the
intersection of all subfields of F), called the prime subfield
of F , and either k =@ or k = Fp , the integers modulo a prime p.
In the first case F is of characteristic O, in the second
case of characteristic p . In the case when F is finite,
k=F, and [F: Fp] is finite. 1If, say, [F: Fp] =K,
then |F| = p* . Hence if F, is a field vith q elements,
then q = 1)K A P prime.
Let Fq be a finite field and let F: be the multipli-
cative group of Fq . Then \F;\ e s O e F: , then
xq-1 =1

; hence, for xerq, we have x» - x = 0. There-

tore, X2-x= T ®-x . So F_ is the splitting field
xEFq a

of Xq -~ X over Pp , and Fq is a nomal extension of Fp .
Moreover, as a splitting field, Fq is unique up to
isomorphisms.

Conversely, let F be the splitting field of ) SR ¢
over Pp, where q = pK . Let xl,...,xq be the roots of
this polynomial in F. These roots are distinct since the
derivative D(X%3 - X) = -1 #0. Now x + x, is a root of

i J
tex y -~ SLIBCE,



q =T Qi i E
(xi + xj) (x1 + xj) =X + xJ xi xj 0,

and similarly for x - xj . Also xixj is a root, since

q q_q
XAK") G IS X umeX
(iJ J

T ixj :

and similarly xi/xj is a root if x_, # 0. These roots clearly

d
form a field, so, in fact, F = {xl'xz""'xq} . Thus a field
with q elements does exist.

Considering the above, we have:

THEOREM 1lA. If Fq is 8 finite field of order q, then

q = pK , P prime. For every such q, there exists exactly

one field F . This field is the splitting field of x%-x

over Fp, and all of its elements are roots of Xq-X .

*
THEOREM 1B. The multiplicative group Fq is cyclic.

Por the proof of this theorem we need

LEMMA 1C. Let G be a finite group of order d. Suppose

for every divisor e of d, there are at most e elements

x€G with x°=1. Then G is cyclic.

The theorem follows immediately, since x® = 1 has at most

*
e roots in Fq . It only remains to give a

Proof of Lemma 1C. Every element of G is of some order

e, where e|{d. Let ¥ (e) be the number of elements of G

whose order is e. Either y(e) =0 or ¥(e) #0. BSuppose

y(e) #0, and let y € G have order e. Then the elements
2 e : e

Ys¥ sese,¥. =1 are distinct and all satisfy x = 1%  Since

there are e of these elements, by hypothesis there can be

e

no other elements x € G satisfying x = 1.



Now let z€ G be any element of order e; then 2z = yi

(L<i<e)., Notice that z = y1 has order e precisely if
(i,e) = 1. Hence y(e) = @(e) , where @ is the Euler o~
function. So, in general, ¥ (e) < @(e) , taking into account

the possibility that ¢ (e) =0. But

d=) 4@ 5 ) v =d .
e\d e\d
Hence, for every divisor e of d, V{(e) = gg(e); in particular,
¥(d) =9 #£0 . That is, there exists an element of order d;

hence, G 1is cyclic.

K
COROLLARY 1D. Iet q=p . 'Then Fq =Fp(x) for some x.
*
Proof. Let x be a generator of Fq "

Let Fq > Fr be finite fields; then r = q". Congider the mapping
0 Pr _ Fr such that w(x) = x3 . This mapping is one-one.

For suppose x3 - yq , then

0=xq-yq=(x-y)q,

whence x -~y =0 and x =y. The mapping w is then one-one

of a finite set to itself, hence is onto. Moreover, ® is an

automorphism of Fr , Bince

wx+y) = E+ N =%+ 3 20 + 0@

and wEy) = G = S ux ey .

n

In fact, ® is an automorphism of "F over F " (leaving Fq
r q

fixed), since if x € F':l , w(x) =x% = x . In other words,



W is a member of the Galois group of Fr over Fq . The map
w is called the "Frobenius automorphism'.
1f . r= qK , then l,w,wz,...,wn-l are automorphisms

of ]-‘r over F'-l , and they are distinct because if

ol = ol ©s1i, 3sK=-1),
i J
then W x) =w (x) for=411 ‘x '€ 24
1 J
3 = x? for all x € F, ,
3 J
so xq-xcl =0 for all xEFr.
qi Clj
But the degree of the polynomial X - X is less than
q}c = r, so the above cannot hold identically for all x € Fou

i J
unless Xq - Xq ig identically zero and i = j. Since

the order of the Galois group is K , these are the only auto-

morphisms of Fr over Fq . We have shown:

THEOREM lE. Every automorphism of Fr over Fq is of

the form ® (0 < i <K - 1) , where w(x) = O . That is,

the Galois group of Fr over Fq is cyclic with generator w .

Recall that the trace of an element is the sum of its
conjugates. For the case Fq = Fr , the trace of an element

x€Fr is

2 K-1

',1:(!:)=x+xq-|-x':l-n»...+xq 3



