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Preface

Operational Modal Analysis is the testing procedure yielding experimental
estimates of the modal parameters from measurements of the structural
response only.

This book reports relevant information and established research results about
Operational Modal Analysis in a unified framework. Most of the material in the
book is currently disseminated throughout several books and journal papers. An
effort has been made to organize this material in a book entirely focused on
Operational Modal Analysis. The different aspects of output-only modal testing,
from test design to post-processing of results, are analyzed. The book is intended to
provide a fundamental theoretical and applicative resource for professional
engineers and researchers involved in modal testing of civil structures.

It has been conceived as a guide through the most relevant theoretical and
practical concepts in view of the development of a customized system for output-
only modal testing based on programmable hardware. The illustrated essential
theory provides a general framework to acquire the ability and understanding of
the techniques. On the other hand, the large attention devoted to the implementation
details provides a valuable stimulus in approaching the study. The applicative
perspective makes learning easy and the book suitable for a wide range of readers.
In order to simplify the practical implementation of concepts and methods, the use
of LabVIEW for software and system development is recommended, because it is
characterized by an advantageous learning curve. Moreover, it is very powerful and
versatile, making possible the integration of measurements and data processing in a
single platform.

Under this premise, it is possible to understand the choice of focusing
the attention on implementation details rather than heavy mathematical proofs.
The mathematics is kept as simple as each topic allows; most of the equations are
functional to the prompt implementation of algorithms and methods by the reader.
The basic software accompanying the book is oriented to fit the needs of both the
modal analysts on one hand, and undergraduate/graduate students, researchers and
developers on the other hand. The latters, in fact, are usually interested in writing
their own code for further developments or business opportunities, and the
accompanying software serves as a reference. Test engineers, instead, can find
here the tools and the fundamental information to promptly start the modal tests and
properly interpret the results.
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Preface

The material is presented at a level suitable for upper-level undergraduate or
post-graduate students and professional engineers. In fact, all the material in the
book and the organization of the topics are based on the courses given by the
authors at undergraduate and graduate students of the University of Molise and the
University of Naples Federico 11 as well as the field experience made in the context
of the spin-off company S2X s.r.l. An attempt has been made to produce a self-
contained book, with basics of structural dynamics and modal analysis as the only
prerequisite to understand most of the presented material. Sufficient details are
given in the chapters to cover the necessary multidisciplinary skills that are required
to the modal analyst. Several references are also provided at the end of each chapter
for the reader who is interested in more details about the various topics.

A number of explanatory applications will help the reader in gaining confidence
with the concepts and understanding the potential of output-only modal testing.
Most of the analyzed case studies are applications to real structures. This circum-
stance permits to highlight issues and challenges of output-only modal testing that
are often encountered in the practice.

The last part of the book is focused on automated Operational Modal Analysis,
providing an outlook on its promising applicative perspectives in the field of
vibration-based Structural Health Monitoring. An overview of the latest
developments in the field of automated Operational Modal Analysis is presented.
It basically represents a particular viewpoint about the matter, since a wide consen-
sus in the definition of the “best methods™ for automated output-only modal
identification has not been reached, yet. However, the analysis of the main issues
related to automation, together with the attention devoted throughout the book to
relevant aspects of data acquisition and storage (including storage in MySQL
relational databases), aims at linking the material in this book with the wider area
of civil Structural Health Monitoring, that is currently a very active research field.

Since this is a new book, instructors, students, and professional engineers are
invited to write us (carlo.rainieri@unimol.it, giovanni.fabbrocino@unimol.it)
if they have questions, suggestions, or if they identify errors or relevant issues.

We thank you in advance for the time you will spend for this.

Termoli, Italy Carlo Rainieri
Giovanni Fabbrocino
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1.1 Operational Modal Analysis: A New Discipline?

The use of experimental tests to gain knowledge about the dynamic response
of civil structures is a well-established practice. In particular, the experimental
identification of the modal parameters can be dated back to the middle of the
Twentieth Century (Ewins 2000). Assuming that the dynamic behavior of the
structure can be expressed as a combination of modes, each one characterized by
a set of parameters (natural frequency, damping ratio, mode shape) whose values
depend on geometry, material properties, and boundary conditions, Experimental
Modal Analysis (EMA) identifies those parameters from measurements of the
applied force and the vibration response.

In the last decades the principles of system identification and the experimental
estimation of the modal parameters have provided innovative tools for the under-
standing and control of vibrations, the optimization of design, and the assessment of
performance and health state of structures. In fact, even if the Finite Element
(FE) method and the fast progress in computing technologies have made excellent
analysis tools available to the technical community, the development of new high-
performance materials and the increasing complexity of structures have required
powerful tools to support and validate the numerical analyses. In this context the
experimental identification of the modal properties definitely supports the engineers
to get more physical insight about the dynamic behavior of the structure and to
discriminate between the errors due to discretization and those due to simplified
or even wrong modeling assumptions. Moreover, since the vibration response
originates from the modes, which are inherent properties of the structure, forces
exciting the structure at resonant frequencies yield large vibration responses that
can result in discomfort or even damage. Regular identification of modal para-
meters and analysis of their variation can support the assessment of structural
performance and integrity.

Since the origin of EMA, testing equipment and data processing algorithms have
significantly evolved. EMA is currently a well-established field, based on a sound
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2 1 Introduction

theoretical background. An extensive illustration of EMA techniques can be found
in a number of books (Ewins 2000, Heylen et al. 1998, Maia et al. 1997) widely
adopted as references by the scientific and technical community.

EMA has been applied in different fields, such as automotive engineering,
aerospace engineering, industrial machinery, and civil engineering. The identification
of the modal parameters by EMA techniques becomes more challenging in the case
of civil engineering structures because of their large size and low frequency range.
The application of controlled and measurable excitation is often a complex task that
requires expensive and heavy devices. For this reason the community of civil
engineers has more recently focused the attention on the opportunities provided by
Operational Modal Analysis (OMA). OMA can be defined as the modal testing
procedure that allows the experimental estimation of the modal parameters of the
structure from measurements of the vibration response only. The idea behind OMA is
to take advantage of the natural and freely available excitation due to ambient forces
and operational loads (wind, traffic, micro-tremors, etc.) to replace the artificial
excitation. So, they are no more considered as disturbance but, on the contrary,
they make possible the dynamic identification of large civil structures. Since OMA
requires only measurements of the dynamic response of the structure in operational
conditions, when it is subjected to the ambient excitation, it is also known under
different names, such as ambient vibration modal identification or output-only modal
analysis.

Over the years, OMA has evolved as an autonomous discipline. However, most
of the OMA methods have been derived from EMA procedures, so they share a
common theoretical background with input—output procedures. The main differ-
ence is in the formulation of the input, which is known in EMA while it is random
and not measured in OMA. Thus, while EMA procedures are developed in a
deterministic framework, OMA methods can be seen as their stochastic counterpart.

In the civil engineering field, OMA is very attractive because tests are cheap and
fast, and they do not interfere with the normal use of the structure. Moreover, the
identified modal parameters are representative of the actual behavior of the structure
in its operational conditions, since they refer to levels of vibration actually present in
the structure and not to artificially generated vibrations. On the other hand, the low
amplitude of vibrations in operational conditions requires very sensitive, low-noise
sensors and a high performance measurement chain. Additional limitations come
from the assumption about the input, as mentioned, for instance, in Sect. 1.3.
Nevertheless, it represents an attractive alternative to input—output modal analysis
and it shares with EMA most of the fields of application of modal identification
results. In some cases, such as testing of historical structures (where it reduces the
invasiveness of tests and the risk of damage) or vibration-based health assessment
and monitoring (where the replacement of the artificial excitation with ambient
vibrations makes it especially suitable for automation), OMA outperforms EMA,
and this justifies its increasing popularity in the civil engineering community.

Research findings and several successful applications of OMA in different
fields are documented in a number of Journals and proceedings of international
conferences such as the annual IMAC conference (http://www.sem.org/CONF-
IMAC-TOP.asp) organized by the Society of Experimental Mechanics, or the



