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Preface

Within the UK, the Engineering Council is the regulatory body for the engineering profession to
which all engineering institutions are regulated and hold the register of all practicing engineers.
There are three grades of membership: Engineering Technician (Eng.Tech.), Incorporated Engineer
(I.LEng.) and Chartered Engineer (C.Eng.). The Incorporated Engineer requires an education to the
equivalent of a degree; the Chartered requires a minimum of a master’s degree.

In recent years many institutions, including the Institution of Mechanical Engineers, have seen a
considerable increase in applications for Eng Tech. registration. These applicants may be following
a work-based learning program such as an apprenticeship and are enrolled in the institution of their
choice as a student member. Individuals who do not have any formal qualifications may also apply
for registration by demonstrating at an interview that they have the required experience and com-
petence through substantial working experience and by showing that they have sufficient working
knowledge and understanding of the technical issues relating to their area of work.

This book has been written with these young engineers in mind, who are contemplating taking
this important step and moving towards registration. The subject matter is not confined to these
student engineers; it is hoped that more senior practicing engineers who are not contemplating reg-
istration will also find the subject matter useful in their everyday work as a ready reference guide.

The contents have been selected on subjects that young engineers may be expected to cover
in their professional careers, and the text gives solutions to typical problems that may arise in
mechanical design.

Computers are now universally used in design offices, and designers often use software without
really understanding its structure or limitations. They may accept the “answer” without question
and not carry out any qualification testing to verify its accuracy. The importance of carrying out
these checks is stressed 1o ensure that mistakes are minimised.

The design examples selected are mainly static problems, and the writer has tried to give as wide
a selection as possible in the space available. It was deliberated whether to include a selection of
fatigue related problems, and after careful reflection the subject was considered to be beyond the
scope of this book.

The subjects covered include the following:

* Introduction to stress calculations

¢ Beam sections subject to bending

* Shaft design basics

e Keys and spline strength calculations
e Columns and struts

e QGearing

* Introduction to material selection

« Conversions and general tables

Chapter 13, Introduction to Material Selection, has been added so that young engineers will
give some thought to the materials used in terms of physical and mechanical properties. It is rec-
ommended that a personal database be built up listing these properties; this has been found by the
writer Lo be a great asset in his own career when searching for information on this subject.

The solutions used in this book have been checked using MathCAD, and every effort has been
made to ensure that the units are also coherent.

ix



X Preface

Any errors that are found will be totally my responsibility, and therefore I apologise beforehand
for any made. Where errors are found, the writer will be very grateful if you, the reader, can advise
me of them so that future reprints will be corrected.

I have to thank Professor Richard Dippery for his helpful comments when reading the draft copy,
and I take this opportunity to also thank my wife, Eileen, for all the help and support given while
writing the manuscript and to whom this book is dedicated.

Keith L. Richards
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Introduction to
Stress and Strain

This chapter is written for student engineers with only a rudimentary understanding of stresses and
strains and their application to design.

The reader will be introduced to the concepts of direct stress and strain. This includes tensile,
compressive and shear strains, and also defines the modulus of elasticity and rigidity.

1.1 DIRECT STRESS
When a component has either a tensile or compressive force applied to it, the component will either
stretch or be squashed, and the material is then said to be stressed. Stresses cannot be measured
directly: they have to be deduced from strain measurements.

The following brief notes will give some explanation to the terms used in stress calculations.

1.2 TENSILE STRESS

Consider a circular solid bar having a cross-sectional area A subject to an applied tensile force F, as
shown in Figure 1.1. This force is trying to extend the bar by the dimension d.

Stress ¢ = % the symbol for stress is denoted by ©. (1.1
Strain € = % the symbol for strain is denoted by €. (1.2)
Stiffness K = 5 the symbol for strain is denoted by K. (1.3)

1.3 COMPRESSIVE STRESS

Consider the same shaft as shown in Figure 1.1, but this time the force F is now compressing the bar
as shown in Figure 1.2 and shortening the bar by the dimension &.
The fundamental unit of stress in ST units is the Pascal. In the engineering field the Pascal (1/m?)
is generally considered a small quantity, and therefore multiples of kPa, MPa and GPa are used.
Areas may be calculated in mm?, and here the units of stress measured in N/mm? are quite
acceptable. As 1 N/mm? is equivalent to 1,000,000 N/m?, then it will follow that I N/mm? is
the same as | MPa.
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FIGURE 1.1 A circular solid bar under direct tension.
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FIGURE 1.2 A circular solid bar under direct compression.

1.4 DIRECT STRAINS

In the above discussion on stress it was shown that the force F produces a deformation & in the
length of the component.
This change in length is referred to as strain and is defined as:
300 . L .
= 100 The symbol for strain is € (epsilon).

Strain has no units, as it is the ratio of the change in length to the original length, and the units
therefore cancel out. Most engineering material has low strain values, as excessive strain will lead
to extensive damage in the material. It will be found when studying the subject further that strain is
generally written in the exponent of 107, and this is usually written as p€ (micro-strain).

Example 1.1

Consider a metal rod 12.0 mm diameter and 2000 mm long subject to a tensile force of 250 N.
The bar stretches 0.3 mm. Assuming the material is elastic, determine the following:

1. The stress in the rod.
2. The strain in the rod.

Solution:

Area of rod:

_mx12.0° (1.4)
4

Area =113.097 mm’
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1. The stress in the rod:

F
o=—
A
2500
113.097 (1.5)
6 =2.210 N/mm‘(or 2.21MPa)
2. The strain in the rod:
S
e€=—
L
2000

= 0.00015 (150 pe)

1.5 MODULUS OF ELASTICITY (E)

When an elastic material is stretched, it will always return back to its original shape when released.
Figure 1.3 shows that the deformation of the material is directly proportional to the force causing
the extension. This is known as Hooke’s law.

- B
Stiffness = 5
(1.7)
N
=k—
m
Different classes of materials will have different stiffnesses dependent upon the material and
size. The size characteristic can be eliminated by using stress and strain values instead of force and
deformation.
Force and deformation can be related to direct stress and strain:

F=0-A (1.8)
d=¢-L
a
A
|
- . loy-0y)
Elastic Modulus E = ————
(6, —90,)
)

8 9

FIGURE 1.3 Relationship between stress and strain.
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Therefore
F oA
—=— (1.9)
A €L

and
F-L o©
—=— 1.10
A0 € ki)

The stiffness is in terms of stress and strain only, and this will be a constant. This constant is
known as the modulus of elasticity and has the symbol E.
Hence:

T

E= L
A-

|

e

(L.11)

=]

Plotting stress against strain will give a straight line having a gradient of E (see Figure 1.3). The
units of E are the same as stress.

1.6 ULTIMATE TENSILE STRESS

All materials, when stretched, will reach a point when the material has deemed to have failed.
This failure may be when there is a catastrophic break. This stress level is known as the ultimate
tensile stress (UTS). Different materials will have failure values dependent upon the material type.

Example 1.2

A tensile test carried out on a steel test specimen having a cross-sectional area of 150 mm’ and a
gauge length of 50 mm results in the elastic section having a gradient of 500 x 10° N/mm.
Determine the modulus of elasticity.

Solution:

From the ratio % the gradient may be established, and this can be used to calculate E.

=500x10"x£
100

=166.667 N/mm’(166.667 MPa).

1.7 SHEAR STRESS

When a force is applied transverse to the length of the component (i.e. sideways) the force
is known as a shear force. Examples of this occur when a material is punched as in
Figure 1.4, when a beam carries a transverse load as in Figure 1.5, or a pin is carrying a load as
in Figure 1.6.

Shear stress is the force per unit area that is subject to the force as the cross-sectional area of the
beam or the cross-sectional area of the pin. The unit for shear stress is T (tau).
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FIGURE 1.4 Malterial being punched.

Force
Z {1
o .
A

FIGURE 1.5 Beam subject 1o a transverse force.

Force

FIGURE 1.6 Pin subject to shear force.

Positive Shear Negative Shear

FIGURE 1.7 Direction of shear.

Shear stress T= % (1.12)

The sign convention for shear force and shear stress is dependent upon how the material is being
sheared. Figure 1.7 defines both positive shear and negative shear.

To understand the basic theory of the shear process, consider a block of rubber that is subject to
a sideways force as shown in Figure 1.8
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1

——p Force

Y L
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WA / e——
I l”sxw- A I

FIGURE 1.8 Block of rubber subject to sideways force.

where
F = sideways force
L = depth of section
O = shear deflection

1.8 SHEAR STRAIN

As in Figure 1.8 the force F causes the block to deform. The shear strain is defined as the ratio of
the height L to the distance deformed 9, i.e. 8/L.

It is also seen in Figure 1.8 that the end face rotates through an angle vy; as this is generally a very
small angle, it can be considered that the distance § is the length of an arc having a radius of L with
an angle y such that:

)
=— 1.13
i L (1.13)

The symbol for the shear strain is Y (gamma).

1.9 MODULUS OF RIGIDITY

Just as the modulus of elasticity, E, relates tensile stress to tensile strain, the modulus of rigidity, G,
relates shear stress to shear strain, and a plot of this relationship will give a straight line as shown
in Figure 1.9.

The gradient of the line is constant —, and this is the spring stiffness of the block of rubber in

N/m. Other materials will display different spring stiffnesses.
If the force F is divided by the area A and & by the height L, the relationship will still be a
constant such that:

o]

L
= ——=conslant 1.14
A5 ( )

> |
- |o

Now:

Eecand 8oy (115)
A L.
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FIGURE 1.9 Modulus of rigidity.

Hence:

—

F-
A-

= constant

(4}

z
Y
This constant is known as the modulus of rigidity and has the symbol G.

1.10 ULTIMATE SHEAR STRESS

(1.16)

Permanent deformation will occur in a material if the material is sheared beyond a certain limit
and does not return back to its original shape. In this instance the elastic limit has been exceeded.
When the material is stressed to the limit where the part fractures into two separate pieces, i.e. in
a punching operation or a pin joint fails, the ultimate shear stress has been reached. The ultimate

shear stress has the symbol 1.

Example 1.3

Calculate the force required to pierce a hole 20.0 mm diameter in a sheet 5.0 mm thick given that

the ultimate shear stress is 50.0 MPa.

Solution:

The area to be pierced:
Circumference of cut:

n-D=mnx20.0 mm

=62.832 mm
Area of cut:

=62.832 x 5.0 mm?
= 314.159 mm’

The ultimate shear strength = 50 N/mm?:

Shear force required:
F=1256.64 kN



