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Preface

In 1940-1941 von Neumann lectured on invariant measures at the Institute for
Advanced Study. This book is essentially a written version of what he said.

The lectures began with general measure theory and went on to Haar measure
and some of its generalizations. Shizuo Kakutani was at the Institute that year,
and he and von Neumann had many conversations on the subject. The conversa-
tions revealed facts and produced proofs—quite a bit of the content of the course,
especially toward the end, was discovered just a week or two or three before it
appeared on the blackboard. The original version of these notes was prepared by
Paul Halmos, von Neumann’s assistant that year. Von Neumann read the hand-
written version before it went to the typist, and sometimes scribbled comments on
the margins. On Chapter VI, the last one, he did more than scribble—he himself
wrote most of it.

The notes were typed. Two or three copies were kept in the Institute—von
Neumann had one and the Institute library had another. Since then a few photo-
copies have been made, but until now the notes have never been published in any
proper sense of the word.
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Publisher’s Note

This publication was made from a copy of a manuscript titled, Invariant Mea-
sures by John von Neumann, Notes by Paul R. Halmos. The copy, made by Roy L.
Adler, was a xerographic copy of a xerographic copy of an ozalid copy (a copying
process predating xerography) of a mimeograph copy of the first five chapters and a
carbon copy of the sixth. The mimeograph copy and the carbon copy were supplied
by Shizuo Kakutani. As a result of copying copies of copies, a certain amount of
degradation had taken place, making some of the math difficult to read, and there
are some errors in the original manuscript. To have a chance at catching them all
one would have had to go over the galleys with an author’s dedication. No one
volunteered for that kind of labor. However, we thank Roy Adler, Bruce Kitchens,
Karl Petersen, and Benjamin Weiss for their substantial efforts in proofreading.

We believe most introduced typos have been caught. Those found and believed
to be errors by the author have been corrected.

Another problem with the original manuscript was the use of set theory nota-
tion no longer in fashion as well as notational and typographical inconsistencies.
For example, set inclusion sometimes appears as C and other times as <. The
manuscript was prepared in the days before word processing and TEX, and sym-
bols were inserted by hand. Different hands were at work in inscribing them. The
handwriting in Chapters IV, V, and VI is not the same as that in the first three
chapters. It appears to be Halmos’s handwriting first and von Neumann’s later. In
addition, Chapter VI is quite different in its style, notation, and numbering scheme,
and almost independent from the previous chapters. Since the author could not
give us his wishes regarding changes, we have kept the old fashioned usage and
inconsistencies to preserve a sense of history, and in the belief that no confusion
will result. We have included examples of six pages, one from each chapter, from
the fourth-generation manuscript used to create this volume: page 7 from Chapter
I; page 39 from Chapter II; page 56 from Chapter III; page 81 from Chapter IV;
page 136 from Chapter V; and page 151 from Chapter VI. The numbers inscribed
on the last chapter were not put there by von Neumann, however. Originally, the
carbons were unnumbered so Adler had to number them to prevent disarray.



PUBLISHER'S NOTE

§3. Msagurability

(3.1.1) A set M is measurable if for every set K we have
v(K) = v(EM) + y(EM).

(3.1.2) In addition to memsurable sets it will also be convenient to
consider measurable partitions. A partition is a finite or countable sequence
of pairwise disjoint sets whose sum is S. If AX 15 the partition (ﬂ./ A, . L) amd ®=
(Bl' Bz. veo)s wo write A < 7\) if ovo‘ry A is a subset of some Be Under
this partial ordering the set of all partitions is a lattice: i.e. to every
pair AL , '03 of partitions there eorresponds a unique partition & (called
the produst of AR and B, =i « %) with the properties that & su ,
CsB,m Csa,c' g9 implies ' S €. € 14 the partitiom
whose sets are AIBJ. £33 = Xy 25 wiv 5 A partition AL = (Ll' T ees) 13 -
measurable if for every set K we have

V(E) = V(KAL) + V(EA) + ..o o
We cbserve that M is a measurable set if and only if the partitiom (M, 'il‘) is
& measurable partiticn. -

(3.2) If M is suoh that Vv (0) % V(M) + v (0ll) for every open set O,

then M is measurable.

Proof, Let K be an arbitrary set, and O an open set, 0 2 K. 'Then
v (0)Z v(om) « v(ol) 2 v(xM) + v (i),
Sinoe V (0) = 4 (0), we have
A0)2 v(kM) « v(xi)
for all 0 2 K, so that
V(K) = inf (0) 2 v (KM) + o (KN),

The opposite inequality follows from (2,8.1).

FI1GURE 1. Chapter I, page 7



PUBLISHER'S NOTE

Proof. Let % be an arbitrary family of closed sets ¥ £ S,
such that for Fiy ...y F € B eiways Fjo ...eF ¥ 6. By sdding all
these sets Fl'...' Fn to % we see that there is no loss of gemerality
in essuming that F,6 € P imply F e e T3 . 4nd st111 O § 9B .

For each F € % select an element x; of F,

Consider a family %'g % with this property:

(1047.1.3) There exists an F_ € 93 suoh that F € B’ implies
’; f P‘n:" )

The set g/of all such B is an ideal of subsets of % 1 That

%'e 3- and %lé %' imply Be Tis clear. And if 915"5 J
then B + B ¢ T because if (10.7.1.3) holds for B’ with Fl, and for
B wien F", then it holds for %+ B” wien F! + F".  Furthermore

xF € F excludes that (10.7.1.3) be true for ﬁ #ith any F_. hence %¢ T
1.0 j 7 1.

So we may apply our hypothesis to I = % and this :7- and
obtain a function () = ¢ (xp|F € PB ) wrioh rulrille (10.7.1.1),
(10.7.1:2).  Since 33 ¢ F £ C, we can form f(xF'r e B ).

Constder an F_ € B. Lot B’ be the set or a2 P ¢ B with

2 ¢5. men B eT. chooseac, ¢ B and torn
!
i " FeB ) win

x.l',-foorF #‘B
x;"‘-xc forFEw

o
1
Tm'“"?ﬁ:’-mhml:withc+%,i.e.withx;(_ F , so
o

FIGURE 2. Chapter II, page 39
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Chapter III

Haar measure

§13. Remarks on measures

We return to the considerations a2nd notations of §2. e assume
that S is a Hausdorff space, A(C) is a set function defined for all com-
pact sets C, and 9 (M) is the measure generated by A (C) (cf. 4.2). For
convenience of reference we give below a set of properties of the space S,

and the functions ) (C) and 4/(ii), and then we establish certain implica-

tion relations among them.

(13.1.1) oz Alc)

(15.1.2) Ale+D) £ x(c) + A(D).

(13.1.3) 1 CD=0 , A(C+D)= ale) +2(D).
(13.1.4) 1 Cc D, alc) € r(D).

(13.1.5) ¥ Cw 0, Alc)>o.

(13,1.6) M) < oo .

(13.1.7) x -3 @(x) is a homeomorphism of S into itself for which
A (g(c)) = A(C) for all C.
(13.2) S is locally compact.
(13.2.1) 0 £ vim)s =
(13.3.2) V(Z:, M) e S, vime).
(13.3.3) If {u $is a sequence of measurable sets (ef. (13.1. 1)) such that
rork,‘a,uk ¥j = 0, then v(Z‘,,. M )= Z;—: v M)
(5.4) 12 MO, w(M)>o0.
(15.5.5) If i is compact, viM) « =.
(13.3.6) x - @(x) is a homeomor;hism of S into itself for which
v (@ (0)= (%) for all k.

FiGURE 3. Chapter III, page 56



PUBLISHER'S NOTE xiii

4
(17.7) It ([ is a class of t;,-pca& then gf‘/((/‘() =& C(J'L)
] 7 "
rosf. It is clear that SO =B G/‘l) e =_#( U{)
wa shall prove that oﬁ”fp by showing that ﬁ_ is a ficld.
(17.7.1) It iz clear fron tho dofizition of OF (U\) that
a
D, 8,797' for & = 1,...,m, DD, = © for 14 3, icplies D¢ wee*D € olr
(17.7.2) 1£ 4,3 € U thea 5 € o0
(17.7.3) It A € o and B © A then 45 € o0 For vy hy-

pothesis we uay write A us a disjoint sum of sets of (/( A= A.10 A20 cee *® A

> 4

nl
6o that

A= (A* cee An)g- A;B'v ses * Anﬁ
By (17.7.2), Ai%' £ oﬁ'and it follows from (17.7.1) that A3 € o©

(17.7.4) £ 4,8 € then A3 € ¥ For £ B = Be¥ e # By

where the ni are pairwise disjoint sots of U(, then
A%’-A(ﬁ) -Aiz'lli;...'ix;, _
and the desired result follows by rcpeated a;plication of (17.7.3).

(17.7.5) If A,BE 0 &a+B € 'o%'. For we have A+D = (#B.  The 1ot
sun has digjoint addends which (by (17.7.4)) belong to (-,"‘hc.".ce (by (17.7.1))
it beloncs to 3” '

Tocaphur the statcments (17.7.4) and (17.7.5) merely asscri that
ia c {ield, as was to bo proved.

(17.9) H%in a ficld, thea /B(?): /7?@')

Proof, The structure of this proof is similar to the one riven
above. ‘e observe that /77: Wg) gﬁ ‘/B(}-)and wo ghall
complate the proof by showing that ” is a Borel field. Y¥e remack that
it is sulficient to prove Lhat /7{ is a field. For if /?r ic a field

and A £7l7,1 "2,2,..., then A} = Ay¢ oo ¢ A, € /77}whcnce (since /7

FIGURE 4. Chapter IV, page 81



xiv PUBLISHER’S NOTE

(26.1.1) Given two £,g E,\gl and an € > 0, denote by H,‘(:,c; €)
tho sot of Al b € J with
|@tm | = €.
Then A has a compact clogure if and only 1f some N, (£,g; € )3 A.

(25.1,2) Tho samo is true if we rostrict ourselves to the K, (£,f) € )

with £ = g,  We con alno assune that Ld =],

(25.1.8) Por [£] =1 the above K, °(£,£3 € ) s the set of all b € 7

with -

e 2550 ﬁ(tr.i-#lg?.r'ﬂ) B e Leesmoplotp it Yy
(25.1.4) Given two Dorol sets Y,N E \fm and an € > 0, donoto by
My () €) the et of A1 be Y with
(b« X) B €
Thon A has a compact closure if and only if some )!: (M,N; € ) Z A.

(25.1.5) Tho cane is true if we reatrict curselves to tho N§(n,u; €)
with ¥ = N,

Proofi We must prove two things:

(<) Each one of the above sets N has & oompact closure,

() I£ 0 18 compact, then there exists & set ¥ ¢, for each
one of the above desoridbed categories of sets N

ﬁoot of ()1 In this case ib suffices to prove (25.1.1), the
others are special cases of this., Indeed:. (25.1.,2) is a spoolal ocase of
(26.1.1). In (R5.1.5), (25.1,8.1) is an obvious restatommt of the defini-
tion of lf (£,£5 € )s The !'c(ﬂ € ) of (25,1.8.2) may be used since
(26.1.3.2) implies (25.1.8.1) so that My (£,£5 €)3Z M, (£3 €).  (25.1.0)
13 a spocial case of (R5.1.1), with £ = 'Xm ’y g® ’X” . (26.1.5)1sa
specinl cage of (R6.1.4).

FIGURE 5. Chapter V, page 136



PUBLISHER'’S NOTE

(30) (28) implies J= k" for R=1, 3, -=-=; P*+l.  Thus ‘*) - 6’)
~\
are satisfied (by (26), (29), (30)) with P~ P+l . this contradicts
our original assumption.
ovd Puadsn
Thus all alternativesjare exhausted, and the proof is completed.

3. Notations (Topology and Group Theory)

(x ! Topological group .
X 4 ' Composition rule (1nGx ).
K" ! Reciproeal (InG ).
1 0 unit (G ).
M 5 N : Arbitrary subset of (x.
o, p/ () : Open subset of G
C, D,E: Compact subsets of G,
M+ Closureof M (in G).
M ] ©  Interior of M (in G) y
xM i set ('xuluem).
Mx :  set (ux ’ KF—M).
Mo se (w | ue M),
Hypotheses:
1) A 1s a continuous (l-variable) function of X (in all G)-
2) XY 1s a continwus (2-varisble) function of %, 4. (in all G),

5) (R 1is locally compact; i.e., there exists a C with 4 € C ',
4. Equidistribution

Let a C be given which will remain fixed throughout all our

discussions.

We define:

FiGURE 6. Chapter VI, p. 151
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