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Preface

The density of transistors in integrated circuits has grown
exponentially since the first circuit was created. This growth has
been dubbed Moore’s Law. Now, why should this be of interest to
the engineer or scientist who wants to study the role of quantum
mechanics and quantum transport in today’s world? Well, if you
think about the dimensions that are intrinsic to an individual
transistor in modern integrated circuits, about 5-20 nm, then it is
clear that these are really quantum mechanical devices. In fact, we
live in a world in which basically all of our modern microelectronics
have become quantum objects, ranging from these transistors
to the world of lasers and light-emitting diodes. It is also not an
accident that this world is created from semiconductor materials,
because these materials provide a canvas upon which we can paint
our quantum devices as we wish. Of course, silicon is the dominant
material since it is the base for the integrated circuits. But, optical
devices are created from a wide range of semiconducting materials
in order to cover the wide spectrum of light that is desired; from the
ultraviolet to the far infrared.

I have had the good fortune to be an observer, and occasional
contributor, to this ever-increasing world of microelectronics. I
have followed the progress from the very first transistor radio to
today’s massive computing machines which live on a chip of about
1 cm? Over these years, | have become involved in the study of
quantum devices and the attempts to try to write down the relevant
theoretical expressions and find their solutions. As an educator,
this led to many attempts to devise a course in which to teach these
complicated (both then and now) quantum approaches to device
physics. As with most people, the effort began with Kadanoff and
Baym’s excellent but small book on Green’s functions. It became
easier when Steve Goodnick and I undertook to write the book
Transport in Nanostructures, which appeared in 1997. But, neither
this book, nor its later second edition, was a proper textbook, and
it contained far too much material to contemplate a one semester
course on the topic. Nevertheless, we pressed forward with its use
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as a text several times in the intervening years. As age has crept not
so slowly upon me, it became evident that it was time to try to put
down my vision of a textbook on the topic. | guess it became evident
that it was going to be now or never, and so I undertook to create
this textbook (and I have to thank Stanford Chong for pushing me
to do this). There are, of course, many other textbooks on Green’s
functions, but not so many that each one of them can treat all of the
approaches to quantum transport. According to me, a more thorough
coverage is essential. Despite the glorious claims of its practioners,
nonequilibrium Green's functions are not the entire answer to the
problem, and this is becoming evident as we experimentally probe
more and more into questions of quantum coherence in real systems.

As evidenced by this book, I have finished the task with this
version. | am sure that no author has ever finished a science text
without immediately (or at least within a few minutes of seeing the
published book) being worried that they have missed important
points or should have said it differently. | know from my other books
that, in looking back at them (which is often with the textbooks),
I wonder what I was thinking when [ wrote certain passages,
especially as there are better ways to express something, which also
crop up in retrospect. Nevertheless, | hope that this book will serve
as a good reference for others as well as myself. It is designed to
be more than a one semester course, so that the teacher can pick
and choose among the topics and still have enough to fill a semester.
It is not a first-year graduate course, as the student should have a
good background in quantum mechanics itself. Typically, the prior
attempts to put the course together have suggested that the student
be “a serious-minded doctoral student,” a phrase my own professor
used to describe a one semester course out of the old 1100+ page
Morse and Feshbach. The field has a lot of mathematical detail, but
sometimes the simpler aspects have been blurred by confusing
presentations. [ don’t know if I can claim that | have overcome this,
but I have tried. Hopefully, the readers will find this book easier to
use than some others.

I have benefitted from the interaction with a great many very
bright people over the years, who have pushed me forward inlearning
about quantum transport. To begin with, there were John Barker,
Gerry lafrate, Hal Grubin, Carlo Jacoboni, Antti-Pekka Jauho, and
Richard Akis, who remain friends to this day, in spite of my inherent
grumpy nature. In addition, | have learned with and from Wolf Porod,
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Walter Potz, Jean-Jacques Niez, Jacques Zimmermann, Al Kriman,
Bob Grondin, Steve Goodnick, Chris Ringhofer, Yukihiko Takagaki,
Kazuo Yano, Paolo Bordone, Mixi Nedjalkov, Anna Grincwajg, Roland
Brunner, and Max Fischetti, as they passed through my group or
were collaborators at Arizona State University. Then, there were
my bright doctoral students who worked on quantum theory and
simulations: Tampachen Kunjunny, Bob Reich, Paolo Lugli, Umberto
Ravaioli, Norman “Mo” Kluksdahl, Rita Bertoncini, Jing-Rong Zhou,
Selim Giinger, Toshishige Yamada, Dragica Vasileska, Nick Holmberg,
Lucian Shifren, Irena Knezevic, Matthew Gilbert, Gil Speyer, Aron
Cummings, and Bobo Liu.

I addition, I have had the good fortune to collaborate with a
number of excellent experimentalists, particularly John Bird, butalso
over the years with Yuichi Ochiai, Koji Ishibashi, and Nobuyuki Aoki
in Japan. Then, there are my doctoral students who labored on the
quantum device experiments: Jun Ma, David Pivin, Kevin Connolly,
Neil Deutscher, Carlo da Cunha, and Adam Burke. These are long
lists, both here and in the previous paragraph, but the present work
is really the result of their work. Of course, [ have to thank my long
persevering wife, who puts up with my shenanigans, and without
whom I probably wouldn’t have amounted to much.

David K. Ferry
Fall 2017
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Chapter 1

Introduction

The transport of carriers, electrons and holes, in semiconductors has
been of interest for quite some time. It certainly became a subject of
central interest when the inventors of the transistor were trying to
understand the properties of the carriers in this new device [1]. But
almostimmediately, there was interest in the behavior of the carriers
at high electric fields, in efforts to understand the breakdown of the
oxides in use at that time [2]. Of course, there was increased interest
in the materials important to the new semiconductor devices, such as
silicon [3]. By understanding the transport properties of the carriers,
one could certainly understand more about the physics governing
the interactions between the carriers and their environment—the
surfaces, the phonons, and so on. Over the decades since, we have
found that the careful modeling of transport and the semiconductor
devices has contributed to the ability to push the technology to ever
smaller physical sizes. Today, the critical length in a modern tri-
gate transistor is approaching the distance between the individual
atoms of the underlying semiconductor. Indeed, we have seen the
fabrication of a device in which the active region consists of a single
phosphorus atom [4]! If the atoms of the semiconductor are held
together by quantum mechanical forces, then it is quite likely that
we will need to describe the transport in such small transistors via
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a fully quantum mechanical approach (and, indeed, this was done to
gain understanding of the physics within the single-atom transistor).

Thus, it is clear that more detailed modeling of the quantum
contributions in modern semiconductor devices is required. These
contributions appear in many forms: (1) changes in the statistical
thermodynamics within the devices themselves as well as in its
connection and interaction with the external world, (2) new critical
length scales, (3) an enlarged role for ballistic transportand quantum
interference, and (4) new sources of fluctuations, which will affect
device performance. Indeed, many of these effects have already
been studied at low temperatures where the quantum effects appear
more readily in such devices [5].

A fair question to ask at this point is why are not quantum
effects seen in today’s very small devices? In fact, quantum effects
are an integral part of the design of today’s devices, but they are not
seen in the observed output characteristics for one good reason.
Most of the important quantum effects are in a direction normal
to that in which the current flows. But this does not diminish their
importance. For example, strain is a common part of every device
in a modern microprocessor. This strain is used to distort the band
structure and improve the mobility of the electrons and holes. So
controlled introduction of quantum modifications has been a part
of the fabrication of devices for more than a decade. And there has
been an ongoing effort to design and create simulation tools for the
semiconductor world, which incorporate the quantum effects in the
very base of the physics included within the tool. On the other hand,
many people have studied quantum transport (and written books on
the subject) in metals for quite a long time. But semiconductors are
not metals. The differences are large and significant. So while one
would like to extrapolate from what is known in metals, this can be
taken only so far. What we would like to do here is to examine what
approaches work for semiconductors and to try to learn from the
many places where studies have been done for these materials and
the resulting devices. In the following sections, we will try to describe
what the key features are that differentiate quantum transport from
the classical transport world that has been used so successfully in
semiconductors and semiconductor devices.



