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Preface

This text is the first volume of a series of books addressing statistical signal processing.
It describes the application of statistical parameter estimation to extraction of information
from received signals in noise. The second volume, entitled Fundamentals of Statistical
Signal Processing: Detection Theory (Prentice Hall PTR, 1998, ISBN: 0-13-504135-X), is
the application of statistical hypothesis testing to the detection of signals in noise. The
series has been written to provide the reader with a broad introduction to the theory and
application of statistical signal processing.

Parameter estimation is a subject that is standard fare in the many books available
on statistics. These books range from the highly theoretical expositions written by
statisticians to the more practical treatments contributed by the many users of applied
statistics. This text is an attempt to strike a balance between these two extremes.
The particular audience we have in mind is the community involved in the design
and implementation of signal processing algorithms. As such, the primary focus is
on obtaining optimal estimation algorithms that may be implemented on a digital
computer. The data sets are therefore assumed to be samples of a continuous-time
waveform or a sequence of data points. The choice of topics reflects what we believe
to be the important approaches to obtaining an optimal estimator and analyzing its
performance. As a consequence, some of the deeper theoretical issues have been omitted
with references given instead.

It is the author’s opinion that the best way to assimilate the material on parameter
estimation is by exposure to and working with good examples. Consequently, there are
numerous examples that illustrate the theory and others that apply the theory to actual
signal processing problems of current interest. Additionally, an abundance of homework
problems have been included. They range from simple applications of the theory to
extensions of the basic concepts. A solutions manual is available from the publisher.
To aid the reader, summary sections have been provided at the beginning of each
chapter. Also, an overview of all the principal estimation approaches and the rationale
for choosing a particular estimator can be found in Chapter 14. Classical estimation
is first discussed in Chapters 2-9, followed by Bayesian estimation in Chapters 10-13.
This delineation will, hopefully, help to clarify the basic differences between these two
principal approaches. Finally, again in the interest of clarity, we present the estimation
principles for scalar parameters first, followed by their vector extensions. This is because
the matrix algebra required for the vector estimators can sometimes obscure the main
concepts.

This book is an outgrowth of a one-semester graduate level course on estimation
theory given at the University of Rhode Island. It includes somewhat more material
than can actually be covered in one semester. We typically cover most of Chapters
1-12, leaving the subjects of Kalman filtering and complex data/parameter extensions
to the student. The necessary background that has been assumed is an exposure to the
basic theory of digital signal processing, probability and random processes, and linear

xi



xii PREFACE
and matrix algebra. This book can also be used for self-study and so should be useful
to the practicing engineer as well as the student.

The author would like to acknowledge the contributions of the many people who
over the years have provided stimulating discussions of research problems, opportuni-
ties to apply the results of that research, and support for conducting research. Thanks
are due to my colleagues L. Jackson, R. Kumaresan, L. Pakula, and D. Tufts of the
University of Rhode Island, and L. Scharf of the University of Colorado. Exposure to
practical problems, leading to new research directions, has been provided by H. Wood-
sum of Sonetech, Bedford, New Hampshire, and by D. Mook, S. Lang, C. Myers, and
D. Morgan of Lockheed-Sanders, Nashua, New Hampshire. The opportunity to apply
estimation theory to sonar and the research support of J. Kelly of the Naval Under-
sea Warfare Center, Newport, Rhode Island, J. Salisbury of Analysis and Technology,
Middletown, Rhode Island (formerly of the Naval Undersea Warfare Center), and D.
Sheldon of the Naval Undersea Warfare Center, New London, Connecticut, are also
greatly appreciated. Thanks are due to J. Sjogren of the Air Force Office of Scientific
Research, whose continued support has allowed the author to investigate the field of
statistical estimation. A debt of gratitude is owed to all my current and former grad-
uate students. They have contributed to the final manuscript through many hours of
pedagogical and research discussions as well as by their specific comments and ques-
tions. In particular, P. Djuri¢ of the State University of New York proofread much

of the manuscript, and V. Nagesha of the University of Rhode Island proofread the
manuscript and helped with the problem solutions.

Steven M. Kay

University of Rhode Island
Kingston, RI 02881
kay@ele.uri.edu
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Chapter 1

Introduction

1.1 Estimation in Signal Processing

Modern estimation theory can be found at the heart of many electronic signal processing
systems designed to extract information. These systems include

1. Radar
. Sonar

. Speech

. Biomedicine

2
3
4. Image analysis
5
6. Communications
7

. Control

8. Seismology,

and all share the common problem of needing to estimate the values of a group of pa-
rameters. We briefly describe the first three of these systems. In radar we are interested
in determining the position of an aircraft, as for example, in airport surveillance radar
[Skolnik 1980]. To determine the range R we transmit an electromagnetic pulse that is
reflected by the aircraft, causing an echo to be received by the antenna 7y seconds later,
as shown in Figure 1.1a. The range is determined by the equation 7, = 2R/c, where
c is the speed of electromagnetic propagation. Clearly, if the round trip delay 7o can
be measured, then so can‘the range. A typical transmit pulse and received waveform
are shown in Figure 1.1b. The received echo is decreased in amplitude due to propaga-
tion losses and hence may be obscured by environmental noise. Its onset may also be
perturbed by time delays introduced by the electronics of the receiver. Determination
of the round trip delay can therefore require more than just a means of detecting a
jump in the power level at the receiver. It is important to note that a typical modern

1
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==
i Ay
Transmit/

receive
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Radar processing
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(a) Radar

Transmit pulse

Time

Time

(b) Transmit and received waveforms

Figure 1.1 Radar system

radar system will input the received continuous-time waveform into a digital computer
by taking samples via an analog-to-digital convertor. Once the waveform has been
sampled, the data compose a time series. (See also Examples 3.13 and 7.15 for a more
detailed description of this problem and optimal estimation procedures.)

Another common application is in sonar, in which we are also interested in the
position of a target, such as a submarine [Knight et al. 1981, Burdic 1984] . A typical
passive sonar is shown in Figure 1.2a. The target radiates noise due to machinery
on board, propellor action, etc. This noise, which is actually the signal of interest,
propagates through the water and is received by an array of sensors. The sensor outputs
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Figure 1.2 Passive sonar system

are then transmitted to a tow ship for input to a digital computer. Because of the
positions of the sensors relative to the arrival angle of the target signal, we receive
the signals shown in Figure 1.2b. By measuring 7y, the delay between sensors, we can
determine the bearing 3 from the expression

B = arccos (ETd—D) (€.1)

where ¢ is the speed of sound in water and d is the distance between sensors (see
Examples 3.15 and 7.17 for a more detailed description). Again, however, the received
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Figure 1.3 Examples of speech sounds

waveforms are not “clean” as shown in Figure 1.2b but are embedded in noise, making
the determination of 7, more difficult. The value of 3 obtained from (1.1) is then only
an estimate.

Another application is in speech processing systems [Rabiner and Schafer 1978].
A particularly important problem is speech recognition, which is the recognition of
speech by a machine (digital computer). The simplest example of this is in recognizing
individual speech sounds or phonemes. Phonemes are the vowels, consonants, etc., or
the fundamental sounds of speech. As an example, the vowels /a/ and /e/ are shown
in Figure 1.3. Note that they are periodic waveforms whose period is called the pitch.
To recognize whether a sound is an /a/ or an /e/ the following simple strategy might
be employed. Have the person whose speech is to be recognized say each vowel three
times and store the waveforms. To recognize the spoken vowel, compare it to the
stored vowels and choose the one that is closest to the spoken vowel or the one that
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Figure 1.4 LPC spectral modeling

minimizes some distance measure. Difficulties arise if the pitch of the speaker’s voice
changes from the time he or she records the sounds (the training session) to the time
when the speech recognizer is used. This is a natural variability due to the nature of
human speech. In practice, attributes, other than the waveforms themselves, are used
to measure distance. Attributes are chosen that are less susceptible to variation. For
example, the spectral envelope will not change with pitch since the Fourier transform
of a periodic signal is a sampled version of the Fourier transform of one period of the
signal. The period affects only the spacing between frequency samples, not the values.
To extract the spectral envelope we employ a model of speech called linear predictive
coding (LPC). The parameters of the model determine the spectral envelope. For the
speech sounds in Figure 1.3 the power spectrum (magnitude-squared Fourier transform
divided by the number of time samples) or periodogram and the estimated LPC spectral
envelope are shown in Figure 1.4. (See Examples 3.16 and 7.18 for a description of how



