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Preface

In this book we take a closer look at discrete models in differential geometry and
dynamical systems. The curves used are polygonal, surfaces are made from trian-
gles and quadrilaterals, and time runs discretely. Nevertheless, one can hardly see
the difference to the corresponding smooth curves, surfaces, and classical dynam-
ical systems with continuous time. This is the paradigm of structure-preserving
discretizations. The common idea is to find and investigate discrete models that
exhibit properties and structures characteristic of the corresponding smooth geo-
metric objects and dynamical processes. These important and characteristic quali-
tative features should already be captured at the discrete level. The current interest
and advances in this field are to a large extent stimulated by its relevance for
computer graphics, mathematical physics, architectural geometry, etc.

The book focuses on differential geometry and dynamical systems, on smooth
and discrete theories, and on pure mathematics and its practical applications. It
demonstrates this interplay using a range of examples, which include discrete con-
formal mappings, discrete complex analysis, discrete curvatures and special sur-
faces, discrete integrable systems, special texture mappings in computer graphics,
and freeform architecture. It was written by specialists from the DFG Collaborative
Research Center “Discretization in Geometry and Dynamics”. The work involved in
this book and other selected research projects pursued by the Center was recently
documented in the film “The Discrete Charm of Geometry” by Ekaterina Eremenko.

Lastly, the book features a wealth of illustrations, revealing that this new branch
of mathematics is both (literally) beautiful and useful. In particular the cover
illustration shows the discretely conformally parametrized surfaces of the inflated
letters A and B from the recent educational animated film “conform!” by Alexander
Bobenko and Charles Gunn.

At this place, we want to thank the Deutsche Forschungsgesellschaft for its
ongoing support.

Berlin, Germany Alexander 1. Bobenko
November 2015
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Discrete Conformal Maps: Boundary Value
Problems, Circle Domains, Fuchsian
and Schottky Uniformization

Alexander 1. Bobenko, Stefan Sechelmann and Boris Springborn

Abstract We discuss several extensions and applications of the theory of discretely
conformally equivalent triangle meshes (two meshes are considered conformally
equivalent if corresponding edge lengths are related by scale factors attached to
the vertices). We extend the fundamental definitions and variational principles from
triangulations to polyhedral surfaces with cyclic faces. The case of quadrilateral
meshes is equivalent to the cross ratio system, which provides a link to the theory of
integrable systems. The extension to cyclic polygons also brings discrete conformal
maps to circle domains within the scope of the theory. We provide results of numer-
ical experiments suggesting that discrete conformal maps converge to smooth con-
formal maps, with convergence rates depending on the mesh quality. We consider
the Fuchsian uniformization of Riemann surfaces represented in different forms:
as immersed surfaces in R, as hyperelliptic curves, and as CP' modulo a classi-
cal Schottky group, i.e., we convert Schottky to Fuchsian uniformization. Extended
examples also demonstrate a geometric characterization of hyperelliptic surfaces
due to Schmutz Schaller.

1 Introduction

Not one, but several sensible definitions of discrete holomorphic functions and
discrete conformal maps are known today. The oldest approach, which goes back
to the early finite element literature, is to discretize the Cauchy—Riemann equa-
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2 A.l. Bobenko et al.

tions [10-14, 27]. This leads to linear theories of discrete complex analysis, which
have recently returned to the focus of attention in connection with conformal models
of statistical physics [8, 9, 22, 23, 29, 40-42], see also [4].

The history of nonlinear theories of discrete conformal maps goes back to
Thurston, who introduced patterns of circles as elementary geometric way to visual-
ize hyperbolic polyhedra [45, Chapter 13]. His conjecture that circle packings could
be used to approximate Riemann mappings was proved by Rodin and Sullivan [35].
This initiated a period of intensive research on circle packings and circle patterns,
which lead to a full-fledged theory of discrete analytic functions and discrete con-
formal maps [44].

A related but different nonlinear theory of discrete conformal maps is based on
a straightforward definition of discrete conformal equivalence for triangulated sur-
faces: Two triangulations are discretely conformally equivalent if the edge lengths
are related by scale factors assigned to the vertices. This also leads to a surprisingly
rich theory [5, 17, 18, 28]. In this article, we investigate different aspects of this
theory (Fig. 1).

We extend the notion of discrete conformal equivalence from triangulated
surfaces to polyhedral surfaces with faces that are inscribed in circles. The basic
definitions and their immediate consequences are discussed in Sect. 2.

In Sect. 3, we generalize a variational principle for discretely conformally equiv-
alent triangulations [5] to the polyhedral setting. This variational principle is the
main tool for all our numerical calculations. It is also the basis for our uniqueness
proof for discrete conformal mapping problems (Theorem 3.9).

Section 4 is concerned with the special case of quadrilateral meshes. We discuss
the emergence of orthogonal circle patterns, a peculiar necessary condition for the
existence of solutions for boundary angle problems, and we extend the method of
constructing discrete Riemann maps from triangulations to quadrangulations.

In Sect. 5, we briefly discuss discrete conformal maps from multiply connected
domains to circle domains, and special cases in which we can map to slit domains.

Section 6 deals with conformal mappings onto the sphere. We generalize the
method for triangulations to quadrangulations, and we explain how the spherical
version of the variational principle can in some cases be used for numerical calcu-
lations although the corresponding functional is not convex.

Section 7 is concerned with the uniformization of tori, i.e., the representation of
Riemann surfaces as a quotient space of the complex plane modulo a period lattice.
We consider Riemann surfaces represented as immersed surfaces in R?, and as ellip-
tic curves. We conduct numerical experiments to test the conjectured convergence
of discrete conformal maps. We consider the difference between the true modulus
of an elliptic curve (which can be calculated using hypergeometric functions) and
the modulus determined by discrete uniformization, and we estimate the asymptotic
dependence of this error on the number of vertices.

In Sect. 8, we consider the Fuchsian uniformization of Riemann surfaces repre-
sented in different forms. We consider immersed surfaces in R* (and S*), hyperellip-
tic curves, and Riemann surfaces represented as a quotient of € modulo a classical
Schottky group. That is, we convert from Schottky uniformization to Fuchsian uni-
formization. The section ends with two extended examples demonstrating, among
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Fig. 1 Uniformization of compact Riemann surfaces. The uniformization of spheres is treated in
Sect. 6. Tori are covered in Sect. 7. and Sect. 8 is concerned with surfaces of higher genus
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other things, a remarkable geometric characterization of hyperelliptic surfaces due
to Schmutz Schaller.

2 Discrete Conformal Equivalence of Cyclic Polyhedral
Surfaces

2.1 Cyclic Polyhedral Surfaces

A euclidean polyhedral surface is a surface obtained from gluing euclidean poly-
gons along their edges. (A surface is a connected two-dimensional manifold, pos-
sibly with boundary.) In other words, a euclidean polyhedral surface is a surface
equipped with, first, an intrinsic metric that is flat except at isolated points where it
has cone-like singularities, and, second, the structure of a CW complex with geo-
desic edges. The set of vertices contains all cone-like singularities. If the surface has
a boundary, the boundary is polygonal and the set of vertices contains all corners of
the boundary.

Hyperbolic polyhedral surfaces and spherical polyhedral surfaces are defined
analogously. They are glued from polygons in the hyperbolic and elliptic planes,
respectively. Their metric is locally hyperbolic or spherical, except at cone-like sin-
gularities.

We will only be concerned with polyhedral surfaces whose faces are all cyclic,
i.e., inscribed in circles. We call them cyclic polyhedral surfaces. More precisely,
we require the polygons to be cyclic before they are glued together. It is not required
that the circumcircles persist after gluing; they may be disturbed by cone-like sin-
gularities. A polygon in the hyperbolic plane is considered cyclic if it is inscribed
in a curve of constant curvature. This may be a circle (the locus of points at con-
stant distance from its center), a horocycle, or a curve at constant distance from a
geodesic.

A triangulated surface, or triangulation for short, is a polyhedral surface all of
whose faces are triangles. All triangulations are cyclic.

2.2 Notation

We will denote the sets of vertices, edges, and faces of a CW complex Z by Vyx, Ex,
and Fyx, and we will often omit the subscript when there is no danger of confusion.
For notational convenience, we require all CW complexes to be strongly regular.
This means that we require that faces are not glued to themselves along edges or
at vertices, that two faces are not glued together along more than one edge or one
vertex, and that edges have distinct end-points and two edges have at most one
endpoint in common. This allows us to label edges and faces by their vertices. We
will write ij € E for the edge with vertices i, j € V and ijkl € F for the face with
vertices i, j, k,l € V. We will always list the vertices of a face in the correct cyclic
order, so that for example the face ijk/ has edges ij, jk, kl, and li. The only reason
for restricting our discussion to strongly regular CW complexes is to be able to use
this simple notation. Everything we discuss applies also to general CW complexes.
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2.3 Discrete Metrics

The discrete metric of a euclidean (or hyperbolic or spherical) cyclic polyhedral sur-
face X is the function £ : Ex — R, that assigns to each edge ij € Ey its length £;;.
It satisfies the polygon inequalities (one side is shorter than the sum of the others):

_eilil 4- ei:i3+. ot EinAIin > O
giliz = Z,‘:,‘]+... +e,'"7],‘n >0

foralliyi,...i, € Fx (1)
E,-,,-l =+ £i2i3+. oy = E,-n_],-” >0
In the case of spherical polyhedral surfaces, we also require that
i FL5 Fa Bt i € 20, (2)

The polygon inequalities (1) are necessary and sufficient for the existence of a
unique cyclic euclidean polygon and a unique cyclic hyperbolic polygon with the
given edge lengths. Together with inequality (2) they are necessary and sufficient
for the existence of a unique cyclic spherical polygon. For a new proof of these ele-
mentary geometric facts, see [24]. Thus, a discrete metric determines the geometry
of a cyclic polyhedral surface:

Proposition and Definition 2.1 If ¥ is a surface with the structure of a CW com-
plex and a function € : Ex — R satisfies the polygon inequalities (1), then there
is a unique euclidean cyclic polyhedral surface and also a unique hyperbolic cyclic
polyhedral surface with CW complex £ and discrete metric L. If £ also satisfies
the inequalities (2), then there is a unique spherical cyclic polyhedral surface with
CW complex T and discrete metric .

We will denote the euclidean, hyperbolic, and spherical polyhedral surface with
CW complex X and discrete metric € by (Z, €)eue, (2, €)pyp, and (Z, €)spn, respec-
tively.

2.4 Discrete Conformal Equivalence

We extend the definition of discrete conformal equivalence from triangulations
[5, 28] to cyclic polyhedral surfaces in a straightforward way (Definition 2.2). While
some aspects of the theory carry over to the more general setting (e.g., Mobius
invariance, Proposition 2.5), others do not, like the characterization of discretely
conformally equivalent triangulations in terms of length cross-ratios (Sect. 2.5). We
will discuss similar characterizations for polyhedral surfaces with 2-colorable ver-
tices and the particular case of quadrilateral faces in Sects. 2.7 and 2.8.
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We define discrete conformal equivalence only for polyhedral surfaces that are
combinatorially equivalent (see Remark 2.4). Thus, we may assume that the surfaces
share the same CW complex ¥ equipped with different metrics ¢, €.

Definition 2.2 Discrete conformal equivalence is an equivalence relation on the set
of cyclic polyhedral surfaces defined as follows:

e Two euclidean cyclic polyhedral surfaces (X, €),,. and (X, ) pye are discretely
conformally equivalent if there exists a function « : Vy — R such that

eij — 6%(u'+u’)£ij. (3)

e Two hyperbolic cyclic polyhedral surfaces (Z, €);y, and (X, E);,_\.,, are discretely
conformally equivalent if there exists a function u : Vyx — R such that

sinh (%’—) = 1%+ ginh (%) 4)

e Two spherical cyclic polyhedral surfaces (Z, €); and (X, é)sp,, are discretely
conformally equivalent if there exists a function u : Vx — R such that

; 51) Ly o3 (fq)
= g2\l - 5
sm(2 e sin 5 5

We will also consider mixed versions:

e A euclidean cyclic polyhedral surface (X, £)., and a hyperbolic cyclic polyhe-
dral surface (X, €)p, are discretely conformally equivalent if

i
sinh (—21) = g2t g, (6)

e A euclidean cyclic polyhedral surface (Z, €)., and a spherical cyclic polyhedral
surface (X, €),p are discretely conformally equivalent if

it (%f) — ettutung, %

¢ A hyperbolic cyclic polyhedral surface (X, £)y, and a spherical cyclic polyhedral
surface (X, Z)S,,,, are discretely conformally equivalent if

'

sin (%) = 2+ sinh (%) (@

Remark 2.3 Note that relation (5) for spherical edge lengths is equivalent to rela-
tion (3) for the euclidean lengths of the chords in the ambient R? of the sphere (see
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Fig. 2 Spherical and
hyperbolic chords

Fig. 2, left). Likewise, relation (4) for hyperbolic edge lengths is equivalent to (3)
for the euclidean lengths of the chords in the ambient R*! of the hyperboloid model
of the hyperbolic plane (see Fig. 2, right).

Remark 2.4 For triangulations, the definition of discrete conformal equivalence has
been extended to meshes that are not combinatorially equivalent [5, Definition 5.1.4]
[17, 18]. It is not clear whether or how the following definitions for cyclic polyhe-
dral surfaces can be extended to combinatorially inequivalent CW complexes.

The discrete conformal class of a cyclic polyhedral surface embedded in n-
dimensional euclidean space is invariant under Mobius transformations of the ambi-
ent space:

Proposition 2.5 (Mdbius invariance) Suppose P and P are two combinatorially
equivalent euclidean cyclic polyhedral surfaces embedded in R" (with straight
edges and faces), and suppose there is a Mobius transformation of R" U {oo} that
maps the vertices of P to the corresponding vertices of P. Then P and P are dis-
cretely conformally equivalent.

Note that only vertices are related by the Mdobius transformation, not edges and
faces, which remain straight. The simple proof for the case of triangulations [5]
carries over without change.

2.5 Triangulations: Characterization by Length Cross-Ratios

For euclidean triangulations, there is an alternative characterization of conformal
equivalence in terms of length cross-ratios [5]. We review the basic facts in this
section.

For two adjacent triangles ijk € F and jil € F (see Fig. 3), the length cross-ratio
of the common interior edge ij € E is defined as

ICI',:,' = e (9)

(If the two triangles are embedded in the complex plane, this is just the modulus of
the complex cross-ratio of the four vertices.) This definition of length cross-ratios
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Fig.3 Length cross-ratio

implicitly assumes that an orientation has been chosen on the surface. For non-
orientable surfaces, the length cross-ratio is well-defined on the oriented double
cover.

The product of length cross-ratios around an interior vertex i € V is 1, because
all lengths cancel:

[Teri=1. (10)

el

Proposition 2.6 Two euclidean triangulations (X, £) ey and (Z, é)e,,'c are discretely
conformally equivalent if and only if for each interior edge ij € EY', the induced
length cross-ratios agree.

Remark 2.7 Analogous statements hold for spherical and hyperbolic triangulations.
Equation (9) has to be modified by replacing £ with sin% or sinh %, respectively
(compare Remark 2.3).

2.6 Triangulations: Reconstructing Lengths from Length
Cross-Ratios

To deal with Riemann surfaces that are given in terms of Schottky data (Sect. 8.2) we
will need to reconstruct a function £ : Ex — R. satisfying (9) from given length
cross-ratios. (It is not required that the function £ satisfies the triangle inequalities.)
To this end, we define auxiliary quantities cj‘fk attached to the angles of the triangu-
lation. The value at vertex i of the triangle ifk € F is defined as

c, = ——. (11)
L
Then (9) is equivalent to
¢l
lery = =, (12)

lj

Now, given a function lcr : E™ — R.( defined on the set of interior edges E™ and
satisfying the product condition (10) around interior vertices, one can find parame-



