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Preface

The most cost-effective route to solar cell fabrication was unlocked by utilizing thin-film
technology. The first research papers on this type of cell date back to the 1960s. The semi-
conductor thin film consisting of a II-VI or I-III-VI, compound is normally used in the
solar cell as an optical absorber with the thickness of microns. It is prepared on a low-cost
substrate such as a glass plate, a metal sheet, or a plastic sheet. It was found in the late
1980s that the thin film of quaternary compound Cu,ZnSnS, also has a suitable energy
band and exhibits a photovoltaic effect. In this book we deal with the multinary compound
semiconductors which belong to the tetragonal crystal system and have the optimal band
gap for photovoltaics: the quaternary sulfide, its alloy, and a selenide. The chemical formu-
lae of the latter are represented as Cu,ZnSn(S Se, ), and Cu,ZnSnSe,. The purpose of this
book is to describe current development of thin-film solar cells, from the viewpoint of
device performance and absorber processing. We also describe the physical and chemical
properties of these compounds, which are considered to play an important role in determin-
ing the efficiency of the solar cells.

In the mid-1970s, Professor A. G. Milnes of Carnegie Institute of Technology visited our
University in Nagano to speak on the subject of solar cells. At that time he was a visiting
scholar at the Tokyo Institute of Technology. He stressed the importance of cost in produc-
ing solar cells, and predicted that photovoltaics would not be of any practical use if the cost
was higher than the threshold value (equal to ten cents per watt). He made numerous refer-
ences to this threshold in his talk. He was interested in developing a low-cost GaAs solar
cell which is grown epitaxially on a mono-crystalline substrate, a substrate which could be
made reusable by detaching it many times from the epitaxial layer using selective chemical
etching. Around that time, the efficiency of a GaAs solar cell was 22% while that of a CdTe
thin-film solar cell was 8%. Although his concept is indirectly connected to the recent
development of a GaAs solar cell, the efficiency of which has approximately reached the
theoretical upper limit, it has not been applied to low-cost solar cells because the large-area
mono-crystals are not available. By taking account of the rise in electricity rates (Consumer
Price Index) during the past four decades, his threshold has to be upgraded to 45 (54) cents
per watt at present. It is interesting to note that this converted threshold is only 1.5 times
lower than the price of CdTe thin-film solar modules in 2013, as shown in Chapter 2.
Despite polycrystalline nature, cost-effective performances of thin-film solar cells are
preferable to those of mono-crystalline solar cells.

Multinary compound semiconductors have an absorption coefficient >10*cm™ due to the
direct nature of the band gap. Films of thickness 1 pm can absorb almost all the photons in
the solar spectrum of wavelength shorter than near-infrared wavelengths, and operate as
efficient photocurrent suppliers. The direct band gap is within an optimal range for solar
cells, that is, 1.0-1.5eV. The theoretical upper limit of efficiency for the solar cells is esti-
mated to be 32-34%. There is still room for improvement in the present cell performance
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via a high-quality absorber layer and the optimization of device structure. Since all the
chemical elements of the compound are Earth-abundant, the material cost of the absorber
can be much lowered in comparison to the II-VI or I-III-VI, thin-film solar modules in
which the absorbers are composed of rare elements such as Te and In.

For the sake of simplicity, the chemical formulae are often abbreviated by replacing cop-
per, zinc, tin, sulfur, and selenium with C, Z, T, S, and Se, respectively, and the suffixes are
omitted. Photovoltaic devices which consist of these compounds are referred to as CZTS-
based thin-film solar cells.

In the first chapter of Part I it is described how the concept for CZTS-based thin-film solar
cells is derived from the physical principle of photovoltaics and also from the viewpoint of
abundant natural resources. In the second chapter, their prospects are discussed by reviewing
recent advances in producing thin-film solar modules, among which CdTe modules exhibit
a learning curve pointing at price $US 0.7 per peak watt.

In the first chapter of Part II, it is described that the principal structure type of CZTS is
kesterite, and the existence of some antisite point defects in the compound is demonstrated
by neutron diffraction. Relatively small electron mass and high optical efficiency of the
multinary compounds are deduced from theoretical studies of the energy band structure and
complex dielectric function, respectively. We learn how CZTS is in thermal equilibrium
with volatile sulfur and tin sulfide at growth temperatures, and that the existence of second-
ary phases in CZTS should be identified using specific analyses. Bulk CZTS single crystals
are grown by solution growth, and their transport property is evaluated by Hall measure-
ments. Physical properties of Cu,-II-IV-VI, compounds are systematically compiled such
that their data can provide useful information for the design of thin-film solar cells.

Various processes involved in the preparation of high-quality absorbers for solar cells are
introduced in Part III. Study of thin-film CZTS solar cells reveals that a Cu-poor and Zn-rich
absorber — prepared by sulfurizing a precursor — is required for the improvement of cell effi-
ciency. Disordered CZTS thin films are first sputter-deposited from metal targets in a residual
vapor pressure of H,S and are then annealed in sulfur vapor. After coevaporation techniques
are elucidated to grow thin-film compounds, their application to CZTS-based thin-film solar
cells are reviewed. CZTSe thin films are prepared by annealing the precursor in Se vapor,
which is formed by coating a substrate with the ink composed of CZTS nanocrystals. CZTS
thin films are prepared by oxidation and subsequent sulfurization of an oxyhydrate precursor
which is coated by the sol-gel method. Mono-grain crystallites of the CZTS-based compounds
are grown by a flux method and they are arranged in a mono-grain layer to make solar cells.

Part IV is on the device physics of thin-film solar cells. According to the microscopic
observation by SKPM and conductive AFM, the enhanced minority carrier collection takes
place at the grain boundaries of multinary compounds. The efficiency of CZTS-based thin-
film solar cells fabricated by coevaporation and annealing is at least partly correlated with
the defect density in the absorber. The device characteristics of the thin-film solar cells
are reviewed, and the high series resistance in them is considered attributable to such a
secondary phase as ZnSe. Using the hydrazine pure-solution approach, a CZTSSe thin-film
solar cell with 12.6% efficiency is obtained. The possible effect of band tailing on the open-
circuit voltage is discussed.

We are indebted to Ms Sarah Keegan, Ms Emma Strickland and Ms Rebecca Stubbs for
their assistance with manuscript preparation.

Kentaro Ito
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1

An Overview of CZTS-Based
Thin-Film Solar Cells

Kentaro Ito

Department of Electrical and Electronic Engineering, Shinshu University,
1-17-4 Wakasato, Nagano 380-8553, Japan

1.1 Introduction

This book deals with the thin-film solar cell with optical absorber layer composed of the
copper-zinc-tin-sulphide-based quaternary semiconductor represented by chemical formula
Cu,ZnSnS§, or related compound semiconductors. Throughout this book, we abbreviate the
quaternary compound as CZTS. The concept of CZTS thin-film solar cells is based on the
following principles. The compound semiconductor meets two necessary conditions for
efficient solar cells. One is the direct nature of the band gap and the other is its width within
a certain optimal range for photovoltaic cells. Because the pre-factor of absorption coeffi-
cient for the CZTS thin film is large enough the layer of just micron thickness is able to
absorb sunlight sufficiently, and the use of it as an absorber does not have any damaging
effects on photocurrents. The probability of radiative recombination in the film is able to
exceed that of non-radiative recombination if both absorption and emission of photons are
caused by an allowed direct transition of carriers between valence and conduction bands
without any intermediaries such as crystal defects and phonons. It is therefore possible for
cell efficiency to approach the theoretical limit if Shockley—Read—Hall-type recombination
centers, which play a role in bypassing the direct recombination, are diminished and at the
same time a device structure to confine excited electrons in the CZTS base layer is imple-
mented. The CZTS semiconductor is potential candidate material for terawatt (TW) -scale

Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells, First Edition. Edited by K. Ito.
© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.



4  Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells

photovoltaic energy conversion: a fractional amount of the elemental constituents produced
annually is sufficient to fabricate CZTS thin-film solar cells which can supply renewable
energy on a scale comparable to the world’s electricity consumption. The multiplicity of the
compound is advantageous in designing the semiconductor material for photovoltaic
devices, because we can control its physical properties depending on a substitution of the
cation or anion included in the fundamental tetrahedron for another cation or anion and we
can also avoid the undesirable use of rare or toxic elements. The incomplete (9%) substitution
of sulfur for selenium is a typical example, which has lead to the achievement of alloy thin-
film solar cells with over 10% efficiency [1, 2].

The physics of the photovoltaic effect are described in Section 1.2, including: the spectral
irradiance of solar radiation and the influence of the Earth’s atmosphere on it; the upper limit of
conversion efficiency of a single-junction solar cell which is evaluated on the basis of a detailed
balance model; an optimal range of energy band gaps for photovoltaic energy conversion;
optical absorption in semiconductor thin films and the estimation of the thickness of the absorber
layer required for an efficient thin-film solar cell; and important roles of semiconductor pn-
(positive or negative) homo- and hetero-junctions in the photovoltaic effect. In Section 1.3 we
describe the pursuit of an optimal semiconductor for photovoltaic applications which have a
band gap within the optimal range. The history of the thin-film solar cell is first discussed,
including studies on some mono-crystalline semiconductor materials and their photovoltaic
applications and the development of a chalcopyrite-type thin-film solar cell for comparison. We
then describe how the concept of CZTS technology originated. Finally, we describe our synthe-
sis and characterization of the CZTS absorber and n-type buffer layers to conclude the chapter.

1.2 The Photovoltaic Effect

1.2.1 Solar Radiation
1.2.1.1 Extra-terrestrial Radiation

At the core of the Sun, nuclear fusion of hydrogen releases massive heat. The Sun is sur-
rounded by a thin atmosphere which consists mostly of hydrogen atoms. This is the so-called
photosphere that absorbs the heat and emits electromagnetic radiation into outer space with
almost the same spectral radiation as that of a black body in thermal equilibrium at a high
temperature 7. According to Planck’s formula, the power emitted per unit projected area of
the black body into a unit solid angle per unit frequency interval is given by the spectral
irradiance L (T,), defined

3
L‘-(Ts)ZZhZ 1 (1.)
¢ exp(hv /k,T,)—1

where v is the frequency of radiation, c is the light speed, 4 is the Plank constant, and k;, is the
Boltzmann constant. The photon energy of electromagnetic oscillation at frequency v is given by
hv. The solid angle €2, of the Sun (in steradians) which is seen from the Earth is calculated as:

2

Q =75 =679x10° (1.2)




