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I. Introduction

Phytoalexins are host-synthesized, low molecular weight, broad-spectrum
antimicrobial compounds whose synthesis from distant precursors is in-
duced in plants in response to microbial infection or treatment of plant
tissues with a wide range of naturally occurring or synthetic, artificial com-
pounds (biotic or abiotic elicitors). Phytoalexins were first implicated in
the protection of susceptible potato cultivars against infection with a
virulent race of Phytophthora infestans (potato late blight) as a result of
pre-inoculation of tuber tissue with a race of the fungus to which the
potato cultivar was resistant (1,2). It was a further 20 years before the first
reported phytoalexin, pisatin, was isolated from fungally infected pea pods
and its pterocarpanoid structure determined (3,4). During the two subse-
quent decades, many new phytoalexins have been isolated and identified
from other plant species, these compounds belonging to such structurally
diverse chemical classes as isoflavonoid, terpenoid, stilbene, polyacetylene,
and dihydrophenanthrene. The reader is referred to several excellent re-
views dealing wholly, or in part, with the structure, occurrence, and
biological activity of phytoalexins (5-14).

Two important factors are implied in the definition of a phytoalexin.
First, phytoalexins are believed to be crucial components of the overall
expression of disease resistance in the plant cells in which they accumu-
late; although the evidence supporting this view is strong, it is nevertheless
indirect (see Section V), and the study of phytoalexin induction is still,
therefore, of much interest to plant pathologists. Second, phytoalexins are
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not found in healthy, uninfected tissues; as their induced synthesis has
conclusively been demonstrated by radioisotopic labeling experiments,
phytoalexin induction has recently become of great interest to the bio-
chemist as a suitable experimental system for investigating the regulation
of enzyme levels, and possibly de novo gene expression, in plant cells. A
knowledge of the key enzymes of phytoalexin metabolism is therefore an
important starting point for the study of the expression of disease resis-
tance in plants at the molecular level.

Accumulation of phytoalexins is not the only induced biochemical de-
fense mechanism conferring disease resistance to plants; the involvement
of induced, physical, cell surface barriers (15-17), agglutinins (18), and
protease inhibitors (18,19) has also been implicated in certain plant-
pathogen interactions. It is only through detailed investigation of these
and other possible resistance phenomena that we will eventually arrive at
an understanding of the exact nature of the resistance genes whose manip-
ulation by classical methods still plays an important role in plant breeding
programs. With the advent of recombinant DNA technology, the oppor-
tunity now exists for significant advances to be made in the field of plant
disease resistance in the coming years (20). In addition to its main theme
of discussing the enzymological aspects of phytoalexin metabolism and
its control, it is hoped that the piesent review will focus attention on
areas where the tools of modern molecular biology can be most fruitfully
applied.

There are many aspects of the phytoalexin induction process which
appear outside the scope of this review, although they are so much a part
of an integrated, temporal sequence of events that they cannot be wholly
ignored in the discussions that follow. These areas include (a) initial recog-
nition between host and pathogen, (b) the biochemical determination of
race specificity, (¢) the structure and mode of action of fungal elicitors,
(d) the nature of the putative receptors for fungal elicitors and the sites of
action of abiotic elicitors, and (e) possible inter- and intracellular trans-
mission of elicitation. Detailed information on these and other aspects of
the biochemistry of plant disease resistance is available in a number of
recent review articles (10, 18, 21-26). In the present review, sufficient
background information will be given to enable the reader who is ap-
proaching this field for the first time to place the discussions of biosyn-
thesis, enzymology, and regulation in a wider plant pathological context.

As attention has only recently been turned to biosynthetic aspects of
phytoalexin accumulation, it is unavoidable that in some cases the enzymic
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reactions to be discussed have only been investigated in plant species other
than those producing a particular class of phytoalexin; alternatively, in
fewer cases, the enzymes may only have been well characterized in animal
systems. It is hoped that the inclusion of information obtained from other
organisms will be of value in directing attention to possible avenues for
future research in the context of the phytoalexin pathways.

II. Isoflavonoid Phytoalexins

For historical and scientific reasons, the isoflavonoids are the most
studied class of phytoalexins with respect to their occurrence and metabo-
lism. Although potato, a producer of terpenoid phytoalexins, was the
subject of the investigations that led to the formulation of the phytoalexin
hypothesis (1,2), the first fully characterized phytoalexins were isolated
from members of the Leguminosae; the garden pea (Pisum sativum), dwarf
French bean (Phaseolus vulgaris), and soybean (Glycine max), therefore,
soon became favored experimental material. Of equal importance is the
fact that the biosynthesis. of the isoflavonoid phytoalexins was known to
share a common series of reactions with the general phenylpropanoid path-
way leading to lignin formation, and much of the enzymology of this
pathway had already been elucidated by the time chemists and biochemists
turned their attention to phytoalexin biosynthesis. The following sections
do not attempt to deal with all known isoflavonoid phytoalexins. The sec-
tion on structure and occurrence presents only a general cross section of
the different types of isoflavonoid compound encountered, whereas the
discussion of enzymology and regulation is limited to those few systems
-where sufficient detailed work has been done to enable a coherent overall
picture to be presented. As many reactions are common to the synthesis
of different isoflavonoid phytoalexins, many general details of enzymology
will be relevant to plants whose phytoalexin metabolism has not yet been
investigated.

A. STRUCTURE AND OCCURRENCE

Most phytoalexins are chemically and biogenetically related to known
classes of secondary products which may accumulate constitutively in the
same, or taxonomically related, plant species. Table 1 summarizes the
structures and sources of the most important postinfectionally formed
isoflavonoid derivatives of the Leguminosae. Other strongly or weakly
antifungal isoflavonoids may occur as preformed metabolites, for gxample,
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the isoflavone formononetin (XVI) in Medicago sa.iva, formononetin and

biochanin A (XVII) in Cicer arietinum and Trifolium pratense, and luteone
(XVIII) in the leaves of Lupinus albus (27). Most of the compounds in

HO

OH O
l/ HO

(XVIII)

Table I conform to the definition of phytoalexins as given earlier. Excep-
tions include genistein and 2"-hydroxygenistein which, although accumu-
lating with phaseollin and kievitone in infected (28) and wounded (53)
tissues of Phaseolus vulgaris, are only weakly antimicrobial. These two
isoflavones also serve as precursors for the true phytoalexin kievitone (see
Section II.B.4). Coumestrol is sometimes classed as a phytoalexin, al-
though its biological activity is antibacterial rather than antifungal (51); it
accumulates, along with related coumestans and true isoflavonoid phyto-
alexins, in several legumes including Phaseolus vulgaris (51, 52) and
Medicago sativa (50). Maackiain occurs as a phytoalexin in Pisum sativum
(43) and Trifolium pratense (41). It is, however, also present as the pre-
formed glucoside trifolirhizin in heartwood, callus, or root tissue of several
species jncluding Trifolium and Sophora (7). :

It will be seen from Table I that different plant species produce different
groups of closely related phytoalexins; the main exception within the
Leguminosae is the production, along with medicarpin, of the acetylenic
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phytoalexin wyerone (see Section IV.A) by Vicia faba (54, 55). Also, the
_same phytoalexin may be found in a variety of different, but closely re-

lated species, this being particularly the case with medicarpin. The relative

proportions of the different phytoalexins accumulating in a given plant.
species may depend upon the nature of the invading pathogen (56,57).

The reader is referred to the articles by Cruickshank (5,12), Van Etten
and Peuppke (9), and Rizk and Wood (11) for further details of the struc-
ture, occurrence, and mode of action of isoflavonoid phytoalexins.

B. BIOSYNTHESIS AND ENZYMOLOGY

1. The Central Phenylpropanoid Pathway

The central or “core” phenylpropanoid pathway results in the formation
of hydroxycinnamoyl coenzyme A thiol esters from L-phenylalanine
(Scheme 1). The esters of 4-coumaric and caffeic acids are precursors in
the biosynthesis of flavonoids (including anthocyanins and condensed
tannins), isoflavonoids, and chlorogenic acid, whereas the esters of ferulic
and sinapic acids, after reduction to the corresponding side-chain alcohols,
may undergo oxidative polymerization to yield lignin. Induced lignifica-
tion is an important defense response in many plants including potato (58)
and wheat (59,60). Furthermore, hydroxycinnamic acids have recently
been shown to serve as precursors for the stilbene and dihydrophenanthrene
phytoalexins (see Section IV); increased flux through the central phenyl-
propanoid pathway as a result of fungal infection is not, therefore, limited
to"those plants which produce isoflavonoid phytoalexins.

The operation and control of the phenylpropanoid pathway during the
biosynthesis of lignin and flavonoids has been the subject of several excel-
lent reviews (61-65). The role of this pathway in isoflavonoid phytoalexin
biosynthesis, in addition to the provision of early evidence for induced de
novo synthesis of these phytoalexins, has clearly been demonstrated by
radioactive labeling experiments. In immature pea pods, [U-'*C]phenylala-
nine and [1'%C]cinnamic acid were readily incorporated into pisatin
following treatment of the tissues with the abiotic elicitor CuCl, or spore
suspensions of Monilinia fructicola (66,67). [**C]Phenylalanine was incor-
porated into glyceollin (XIV), the isoflavone daidzein (XIX), and the
coumestans coumestrol (XV) and sojagol (XX) in soybean hypocotyls
infected with an incompatible race of the fungal pathogen Phytophthora
megasperma var sojae (P. megasperma f.sp.glycinea) (68), and into medi-
carpin (IX) in CuCl,-treated seedlings of Trifolium pratense (69). Phenyl-
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alanine and cinnamic acid were similarly good precursors of phaseollin
(XIII) in excised pods (70,71) and tissue cultures (72,73) of Phaseolus
vulgaris.

L-Phenylalanine ammonia-lyase (PAL, E.C.4.3.1.5) catalyzes the first
committed step in the biosynthesis of phenylpropanoid compounds: the
elimination of ammonia from L-phenylalanine to yield frans-cinnamic acid
(reaction 1).

a2

NH,

H
imd |

@»?—CI—COOH e @— C=(IJ—COOH+NH3 (1
H H H

Since its discovery in 1961 by Koukol and Conn (74), a great deal of
attention has been given to the regulation of the enzyme in response to
light, plant growth substances, wounding, and fungal, bacterial, or viral
infection. It has been the subject solely, or in part, of several useful re-
views (61,75-77). In this section the general properties of the enzyme are
summarized, and its role in the phytoalexin response is discussed. The



