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Non — Classical Nucleation Mechanism of C -S - H

Prof. Johann Plank

( Chair for Construction Chemistry, Technische Universitit Miinchen )

ABSTRACT: Calcium silicate hydrate (C — S - H) presents the main component in
hardened cement and is responsible for its principle properties such as compressive strength,
brittleness etc. Currently, its formation is thought to start with nanofoils which then grow into the
larger, well — known needles. Here, the early nucleation and crystallization of C — S - H
precipitated from aqueous solutions of Ca(NO; ), and Na,SiO; was investigated. It was found that in
the absence of PCE, globular nanoparticles of C — S — H with a diameter of ~ 50 nm are
observed. Thereafter, within an hour the globules completely convert to the well — known nanofoils of
C —S - H with ~150 nm length following a non — classical nucleation mechanism. In the presence of
a PCE copolymer, the initial globules show a core — shell morphology, presumably with PCE
polymer as shell ( thickness 4 —8 nm) which delays the conversion to the nanofoils for several
hours. Apparently, the PCE layer effectively shields the C — S — H droplets and strongly delays
transformation from the C =S — H globules to the nanofoils. 2 Si MAS NMR spectroscopy revealed
that in the C — S — H globules, the silicate chains are slightly branched (Q', Q*, Q® species)

whereas in the C —S — H nanofoils only chains of silicate (Q', (? species) occur.

1 INTRODUCTION

Calcium silicate hydrate or C —S — H presents the main hydration product of ordinary Portland
cement. C —S — H is generated from the hydration of the tricalcium silicate (C5S) and dicalcium
silicate (C,S) phases via a dissolution — precipitation mechanism. It presents the binding phase
which is responsible for the strength properties and durability in hardened cement. Generally,
C - S — H exhibits low crystallinity and in hardened cement typically exhibits a Ca/Si molar ratio of
1.6 —1. 8. The layered structure of C —S — H consists of linear silicate chains which are aligned in
“dreierketten” sequences and share oxygen atoms with calcium ions in plane.

The nucleation and crystallization of inorganic minerals is described by two theories. The first,
classical nucleation theory is based on the formation and growth of nuclei. The second, non —
classical nucleation concept presents that the morphology of the precritical clusters can differ
significantly from that of the final bulk crystal. There, an amorphous intermediate ( e. g. liquid
droplets, amorphous nanoparticles) subsequently crystallizes to form the stable crystalline product.

Polycarboxylate (PCE) superplasticizers are known as high range water reducing admixtures
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for concrete. PCEs improve the rheology via an electrosteric dispersing effect. The structure of anionic
comb — like PCE copolymers consists of carboxylate anchor groups at the backbone which are
negatively charged and responsible for the adsorption onto the positively charged surface sites of
cement particles and hydration products like ettringite. While the non — ionic side chains of PCEs are
made from polyethylene glycol (PEG) which is accountable for the dispersing ability via a steric
hindrance effect.

Synthetic C = S — H = PCE nanocomposites are well — known seeding materials which can
enhance the early strength of Portland cement and blended cements. They consist of C - S - H
nanofoils which are stabilized by PCE copolymers adsorbed onto the positively charged surfaces of
C -S - H. An ultra — small size of the C —S — H seeds is required to achieve a maximum seeding
effect on cement hydration and consequently, a much enhanced early strength development of
concrete. However, the initial nucleation and crystallization of C —S — H in the presence of PCE is
still not well understood.

In this study, the very early nucleation and subsequent crystallization of C =S —H (5 min -
48 h) precipitated from Ca( NO; ), and Na,SiO; solutions at a Ca/Si ratio of 1.0 in the absence
and presence of low and high concentrations of an IPEG — PCE superplasticizer was investigated by
capturing the initial precursors of C — S — H via transmission electron microscopy ( TEM) .

Additionally, their nanostructures were characterized via XRD and ?Si MAS NMR spectroscopy.

2 Materials and Methods

2.1 Raw materials |CH3
The starting materials used in the synthesis of CHZ_C|H Bt — 4
C-S - H were Ca(NO;), -4H,0 ( PanReac cC=o0]|, CH, |,

AppliChem, Cermany ) snd Na,Si0 +SH,0 (|)Na |CH2
(VWR Prolabo BDH Chemicals, Germany). As |
PCE superplasticizer, a commercial isoprenyl oxy o
poly ( ethylene glycol ) based superplasticizer /151;
(IPEG PCE) ( Sunrise Co., Lid., Shanghai, |
China) was employed in the synthesis and its C|:H2
solid content was 40% by weight. The chemical 0
structure of this PCE polymer is presented in \‘II_'I'/"

Fig. 1 and its molecular properties and anionic
Fig. 1 Chemical structure of the isoprenyl oxy

poly (ethylene glycol) (IPEG) based

charge amount are listed in Table 1. The pH value
of the PCE solution was adjusted by using NaOH

PCE superplasticizer used in the study.
(Merck KGaA, Germany).
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Table 1 Molecular properties and specific anionic charge density of the IPEG PCE sample.

M,/ M./ PDI Specific anionic charge
(g+mol™l) (g-mol™ 1) (M,/M,) amount at pH 11.7/(peq - g~ ')
35 100 15 700 2.2 2 750

2.2 Preparation and characterization of C -S - H

C-S-H and the C - S - H - PCE nanocomposites were prepared by the co — precipitation
method. Aqueous Ca(NO; ), and Na,SiO; solutions were combined in water or IPEG — PCE solution
to obtain either pure C =S — H or the C = S = H — PCE nanocomposites. The initial molar ratio of
Ca0/Si0, based on the starting materials was 1. 0. Two different PCE concentrations, namely 2. 7%
and 6. 7% , were used in the synthesis. First, 0.35 g or 0. 90 g of the IPEG — PCE solutions were
diluted with 5 mL of water resulting in 2. 7% or 6.7% PCE solutions, respectively, which were
adjusted to pH =8.5 +0. 1 by using aqueous 30% NaOH. Next, solutions of 0.35 g (1.5 mmol)
of Ca(NO;), *4H,0 dissolved in 5 mL of water and 0.32 g (1.5 mmol) of Na,SiO; + 5H,0 in
5 mL of water were prepared at room temperature. After that, both solutions were added to water or
the PCE solution within 5 seconds while stirring at 20 °C. Morphologies of the resulting C - S — H
and C —S — H — PCE respectively were observed over time after 5 min, 15 min, 1 h, 2 h, 4 h,
24 h and 48 h via TEM microscopy.

TEM micrographs of the C =S — H and the C =S — H — PCE samples were collected on a JEOL
JEM 2011 instrument (JEOL, Japan) equipped with a LaBg cathode. Isopropanol suspensions of
the C —S — H samples as prepared were placed on a 300 mesh Cu grid with carbon support films
( Quantifoil Micro Tools GmbH, Germany) with a plasma — treated surface.

Powder X — ray diffraction ( XRD ) patterns were obtained from a BRUKER AXS D8
diffractometer ( Karlsruhe, Germany) with Bragg — Brentano geometry working at 30 kV and
35 mA with Cu Ka radiation between 4. 0° and 60° 26.

The silicate species present in the synthesized C —S — H and C =S — H — PCE nanocomposites
was characterized by ?Si MAS NMR spectroscopy using a Bruker Avance 300 MHz instrument
operating at a resonance frequency of 59.595 MHz. The powder samples were filled into a 7 mm
zirconia rotor and spun at 5 kHz. All spectra were recorded with a relaxation delay of 45 s, and

tetrakis ( trimethylsilyl) silane was used as external standard.

3 Results and Discussion

3.1 Initial nucleation of C-S -H

The early nucleation and crystallization of C — S — H synthesized from aqueous solutions of
Ca(NO; ), and Na,SiO; in the absence and presence of an IPEG — PCE copolymer was observed via
TEM imaging. After 5 minutes of reaction (Fig.2), pure C -=S — H as well as C - S — H - PCE
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particles exhibit globular morphology, with diameters in the range of 40 — 60 nm. Most interestingly ,
a thin layer surrounding the C —S — H droplets was observed on the C - S — H — PCE precipitates,
resulting in a core — shell structure ( Fig. 3) . The layer thickness of the C — S — H particles
precipitated at low concentration of the IPEG — PCE solution (2.7% ) was found at 3 —4 nm
(Fig.3 (b)) while at high PCE concentration (6.7% ), the thickness of the PCE shell was
determined at 6 -8 nm (Fig.3 (¢)).

Fig.2 TEM images of C-S-H (a) and C—-S-H-PCE (b) precipitates after 5 min of ageing.

(a) " (b)

Fig. 3 High resolution TEM images of C —S — H droplets formed in (a) the absence and presence
of an TIPEG - PCE polymer at (b) 2.7% and (c¢) 6.7%.
(a) C=S—H; (b) C=S—H-PCE2.7%; (¢) C-S—H-PCE6.7%

3.2 Conversion of C —S — H globules to nanofoils

Appearance of the initially globular C —S —H and C - S - H — PCE precursors was monitored
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over time via TEM imaging. For the pure C - S — H, the transformation from globular to foil — like
morphology had already started 15 minutes after the Ca ( NOj ),/Na,SiO; solutions had been
combined. After 1 hour, the C —S — H globules had completely disappeared while a network of C —
S — H nanofoils with lengths of ~ 150 nm and a thickness of ~5 nm was found (Fig.4).

Fig.4 TEM images of C —S — H particles after 15 (a) and
60 min (b) of crystallization.

However, TEM imaging of the C =S — H — PCE precipitates revealed a delayed transformation
from the initial globules to the nanofoils. At low PCE concentration (2.7% ), beginning conversion
was evidenced after 2 h by the appearance of first needle —like C =S — H crystallites. Furthermore,,
after 4 h the globules had completely transformed into nanofoils ( Fig.5 (a)). At high PCE
concentration (6.7% ), a strongly delayed conversion from the C —S — H globules to the nanofoils
was observed (Fig.5 (b)). Even after4 h, still only C =S - H - PCE globules were present while
after 48 h of ageing a mixture of globules and foils with lengths of 30 — 50 nm (and thus much
smaller than for pure C =S —H) were found. This effect presumably is owed to a higher amount of
PCE adsorbed which leads to a thicker polymer layer on the C — S — H particles.

The results suggest that, following a non — classical nucleation mechanism, early on C - S - H
is formed as a metastable droplet which then transforms to the thermodynamically more stable, foil —

like morphology. The IPEG — PCE delays the conversion to the nanofoils significantly.
3.3 Structure of early C-S-H

The XRD patterns of pure C — S — H synthesized at various ageing times are shown in
Fig. 6. Immediately after precipitation and nucleation (0 and 5 min), a broad peak indicating a
highly disordered structure was detected, suggesting amorphous character. While at 60 min of
ageing, the diffraction pattern of semi — crystalline C =S —H (I) constituting an imperfect version
of 1.4 nm tobermorite was clearly observed. The main hkO reflections (100, 110, 200, 020)
appear at 16.7°, 29.0°, 31.9° and 49. 7° 26, respectively. Moreover, the 002 reflection can be
found at 7. 2° 26 which signifies a d spacing between the silicate layers of 1. 24 nm.
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" PCEconc.2.7% |

| PCE conc. 6.7 % .

(b)
Fig. 5 TEM images of C —S — H precipitated in the presence of an IPEG — PCE

polymer at 2. 7% (a) and 6.7% (b) concentration at various ageing times.

Intensity/a.u.

0 min

10 20 30 40 50 60
260/(%)

Fig. 6 XRD patterns of synthesized pure C —S — H obtained at 0, 5 and

60 min of crystallization, respectively.

The *Si MAS NMR spectra of pure C — S — H obtained from the precipitation are shown in
Fig. 7. At very early crystallization of 0 and 5 min, the spectra show a broad peak characteristic for
end — chain (Q', 8= =79 ppm), chain member ((Q*, §= -85 ppm) and branching site ((Q?,

0= -93 ppm) silica tetrahedra. However, after 60 minutes of ageing, the branching units have
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disappeared, suggesting that only linear silicate chains are present in the C — S — H nanofoils. This
result supports that the C — S — H globules obtained at very early crystallization exhibit branched
silicate chains while the C — S — H nanofoils resulting from the conversion of the globules showed

only linear silicate chains.
y

HO OH

QZ

\{/
1 1
OH\g[/ 0 @ 07 o g o2 -
i i Si
VRN
AIAEEAIA

nanofoils: Iinear chains of C-S-H

o-

globules

globules Y, Q/ O—_ Q/

50 60 -70 -80 -90 —100 —110 ~120
Chemical shift/ppm globules:branched chains of C-S-H

(a) (b)
Fig. 7 %Si MAS NMR spectra of pure C —S — H precipitates obtained at 0, 5 and 60 min of ageing
(a) and illustration of structural model of linear and branched silicate chains

(b) present in the globular C — S — H particles and the C —S — H foils, respectively.

4 CONCLUSION

Theinitial nucleation and crystallization of C = S — H prepared by co — precipitation from
Ca(NO;), and Na,SiO; in the absence and presence of an IPEG — PCE superplasticizer was
studied. It was found that initially a metastable precursor of C — S — H presenting globular morphology
is formed which later converts to the C — S — H nanofoils following a non — classical nucleation
mechanism. The presence of the PCE delays the conversion from globular to nanofoil - like C -S - H
for several hours because of a layer surrounding the globules which presumably consists of PCE
polymer. At high PCE concentration, transformation to the C — S — H nanofoils is strongly delayed for
several days due to the thicker layer of adsorbed PCE polymer coating the globular C — S — H
particles.

The globular precursor of C — S — H exhibits a highly disordered structure containing branched
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silicate chains. Whereas the C —S —H foils formed after the conversion show a layer structure of semi —

crystalline C =S — H containing non — branched silicate chains.
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