for UnderWater Acoustic

l - Communications
P rq

WILEY

N



OFDM FOR UNDERWATER
ACOUSTIC
COMMUNICATIONS

Shengli Zhou
University of Connecticut, USA

Zhaohui Wang
Michigan Technological University, USA

WILEY



This edition first published 2014
© 2014 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate. Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offices, for customer services and for information about how to apply for
permission to reuse the copyright material in this book please see our website at www.wiley.com.

The right of the author to be identified as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books,

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their
respective owners. The publisher is not associated with any product or vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of
this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. It is
sold on the understanding that the publisher is not engaged in rendering professional services and neither the

publisher nor the author shall be liable for damages arising heretfrom. If professional advice or other expert
assistance is required. the services of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data applied for:

ISBN: 9781118458860

Set in 10/12pt TimesL.TStd by Laserwords Private Limited, Chennai, India
Printed and bound in Malaysia by Vivar Printing Sdn Bhd

I 2014



To Juanjuan, Daniel, Joyce, and my parents Heting and Caiyun
5. Z

To my parents Yongcheng and Jiugin
Z.-H. W.



Preface

Underwater acoustic (UWA) channels have been regarded significantly different from wireless
radio channels, due to their unique characteristics, such as large temporal variations, abun-
dance of transmission paths, and wideband property in nature. Although there are a plethora
of digital and wireless communication textbooks, most of them are tailored towards wireless
radio channels, where simplified channel models are usually adopted to streamline presenta-
tion. Following standard receiver designs in textbooks, a practitioner might often be frustrated
by the receiver performance in real underwater acoustic environments. This book is written to
unfold and to address the challenges in UWA communications particularly for the multicarrier
modulation in the form of orthogonal frequency-division multiplexing (OFDM).

The last decade has witnessed the tremendous development and revolutionary impact of
OFDM on high data-rate radio communications. It is the workhorse of many wireless commu-
nication standards, such as WiFi (IEEE 802.11 a/g/n), WiMAX (IEEE 802.16), digital audio
and video broadcasting (DAB/DVB), and the fourth generation (4G) cellular systems. The
popularity of OFDM stems from its capability to convert a long multipath channel in the
time domain into multiple parallel single-tap channels in the frequency domain, thus consid-
erably simplifying receiver design. Such a feature makes OFDM an attractive choice for UWA
channels. However, the feasibility of underwater acoustic OFDM had not been validated with
experimental data sets until the mid 2000s, although OFDM has been tested in UWA envi-
ronments since the 1990s. Considerable progress for OFDM has been observed in the UWA
community since the late 2000s.

This book is dedicated to the techniques for OFDM in UWA channels, and different chapters
are focused on addressing different challenges. Readers are expected to have certain signal pro-
cessing and communication background. For readers within the UWA community, this book
could deepen their understanding in the design aspects specific to underwater systems. For
readers outside the UWA community, this book will help them to appreciate the distinctions
of system design in different domains.

The technical content of this book mainly originates from the research performed within the
UnderWater Sensor Network (UWSN) lab at the University of Connecticut (UCONN), which
is co-directed by Dr. Jun-Hong Cui and the first author Dr. Shengli Zhou. The past and existing
members who have contributed to the content of the book include: postdoctoral researchers:
Drs. Jie Huang, Hao Zhou. and Xiaoka Xu: past Ph.D. students: Drs. Baosheng Li, Christian
Berger, Jianzhong Huang: current Ph.D. students: Patrick Carroll, Lei Wan, Yi Huang; past
M.S. students: Sean Mason, Weian Chen, Wei Zhou; and visiting scholars: Yougan Chen,



xviti Preface

Haixin Sun, Yuzhi Zhang, Xiaomei Xu. The authors have benefited tremendously from
collaborations with faculty members affiliated with UWSN, in particular, Drs. Peter Willett,
Jun-Hong Cui, Zhijie Shi, James O’Donnell, and Thomas Torgersen. The sincere gratitude
of the authors also goes to the colleagues in the Systems Group at UCONN, especially
Drs. Yaakov Bar-Shalom, Peter Luh, Krishna Pattipati, and Peter Willett, for promoting an
atmosphere for academic excellence.

The authors would like to thank Mr. Lee Freitag, Dr. James Preisig, and their teams from the
Woods Hole Oceanographic Institute (WHOI), and Dr. Josko Catipovic and his team from the
Navy Undersea Warfare Center (NUWC) for providing multiple experimental opportunities.
The data sets from those experiments, especially from the SPACEOS8 experiment, the MACE10
experiment and the AUTEC network, are instrumental to our receiver development and vali-
dation. The experimental opportunities offered by Dr. T. C. Yang have also been very helpful
for our research development. We would also like to acknowledge Dr. Milica Stojanovic for
stimulating discussions at the early stage of research and Dr. Zhengdao Wang for his valuable
comments through regular discussions.

The feedback from the reviewers have helped to improve the presentation of this book.
We acknowledge Drs. Christian Berger, Tolga Duman, Dennis Goeckel, Georgios Giannakis,
Geert Leus, Aijun Song, Milica Stojanovic, Zhengdao Wang, Peter Willett, Chengshan Xiao,
and Ms. Xiaoyi Hu for reviewing different chapters with a short notice. Mr. Mark Hammond,
Ms. Liz Wingett, and Ms.Sandra Grayson from the publisher have been very patient and sup-
portive during this project.

The work in this book has been supported by the Office of Naval Research (ONR) and
National Science Foundation (NSF). We would like to thank the program managers: Dr. Robert
Headrick from ONR who has managed the YIP and PECASE projects, and Dr. Scott Midkiff,
Dr. David Du, Dr. Zygmunt Haas, and Dr. Zhi Tian from different programs at NSF. Dr. Keith
Davidson from ONR has provided a lot of encouragement during annual ONR PI meetings.
The University of Connecticut has provided matching funds to our NSF projects at various
occasions. The first author acknowledges the support of the United Technologies Corporation
(UTC) Associate Professorship in Engineering Innovation (2008—2011), and the Charles H.
Knapp Associate Professorship in Electrical Engineering (2012-2013).

The training from our advisors has laid foundation for the authors to pursue this project.
Dr. Shengli Zhou would like to thank his Ph.D. advisor Dr. Georgios B. Giannakis and his
MSc. advisor Dr. Jinkang Zhu, and Dr. Zhaohui Wang would like to thank her MSc. advisor
Dr. Huizhi Cai, for their mentoring during the graduate studies.

Last but not least, we are grateful to our family members for their continuous support and
encouragement throughout the project.

Shengli Zhou
University of Connecticut

Zhaohui Wang
Michigan Technological University
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XX
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Notation

Scalars
K

Number of subcarriers in one OFDM symbol
Frequency bandwidth of one OFDM symbol
Subcarrier spacing in one OFDM symbol, := B/K
Time-duration of one OFDM symbol, := 1/Af
Time-duration of guard interval for one OFDM symbol
Time-duration of one OFDM block, :=T +7,

Center frequency of communication system

Frequency of the kth subcarrier, :=f, + k/T

The set of null subcarriers in one OFDM symbol

The set of pilot subcarriers in one OFDM symbol

The set of data subcarriers in one OFDM symbol

The set of active subcarriers in one OFDM symbol := Sp | Sp

Time-varying channel impulse response

Time-varying amplitude of the pth path

Time-invariant amplitude of the pth path

Time-varying delay of the pth path

Initial delay of the pth path

Doppler rate of the pth path

Number of paths in the channel

The main Doppler scaling factor in the UWA channel

The residual Doppler shift after removing the main Doppler effect
The equivalent amplitude of the pth path in the baseband

The equivalent scaled delay of the pth path in the baseband

The equivalent residual Doppler rate of the pth path in the baseband
ICI depth

Real Gaussian distribution with mean g and variance o
Circularly symmetric complex Gaussian distribution with zero mean and
variance o>

The waveform in passband
The waveform in baseband: Conversion between () and x(1):



xxiv Notation

F(1) = 2R {x(1)e> ! )
x(r) = LPF[}([)(I_J.Z”,/L’]

Vectors and Matrices

z Measurement vector formed by frequency samples at all the OFDM subcarriers

S Transmitted symbol vector formed by symbols at all the OFDM subcarriers

w Ambient noise vector formed by the ambient noise at all the OFDM subcarriers

n Equivalent noise vector formed by the equivalent noise at all the OFDM
subcarriers

H Channel mixing matrix

CN(0,X) Circularly symmetric complex Gaussian random vector with zero mean and
covariance matrix X

Operations

x Equality of functions up to a scaling factor
|S| Cardinality of set S

[a],, The mth entry of vector a

(Al The (m, k)th entry of matrix A

{a},_, A set formed by elements {[al;, [a],,--- .[a];)
a The estimate of scale a

a The estimate of vector a

A The estimate of matrix A

AT The transpose of matrix A

AH The complex conjugate transpose of matrix A
Af The pseudo-inverse of matrix A

tr(A) Trace of matrix A

Pr{A} Probability of an event A

E(X) Expectation of random variable X

E(x) Expectation of random vector x

Cov(X,Y) Covariance of two random variables
Cov(x.y) Covariance matrix of two random vectors
R{x} Real part of a complex number x

Six} Imaginary part of a complex number x
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