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Foreword

There is an immediacy and a delicious sense of urgency running through Adam'’s book that
makes the very notion of its foreword almost offensive. "Let's go implement some great ideas",
the book seems to rejoice at every page; "l know you don't have the patience but read me first,
this may help." | wouldn't want to hold you much with a fluffy, needless opener for a book that
in turn frames itself as a prelude to many enjoyable hours of spinning code. I'll try to keep this
short and to the point—much in the spirit of the book itself.

D Cookbook aims at enabling you to get work done using D, and it is written from the
perspective of one who's clearly walking the walk. | know that Adam has leveraged D for years in
his consulting gigs, but even if | didn't, | would have inferred this easily. He writes in the factual,
no-nonsense tone of the senior engineer who wants to bring a nOOb up to speed so they can
get good work done together. Adam's use of "you" and "we" nicely orients himself and the reader
toward solving a problem together. He's not coy to just tell the reader what to do to accomplish

a task, but never comes across as patronizing. Simple explanations pepper the recipes, and
there's always an implied "here's something | tried and works well, you may find that useful”
lurking in the subtext.

The book covers a variety of topics that appear to be only loosely connected: what do (to quote
a few consecutive chapter titles) "Ranges", "Integration” (with platforms and other languages),
"Resource Management", and "Wrapped Types" have in common? Usefulness, that's what.

Such topics, and everything else that the book sets out to explain, are likely to be important in
real-world D applications. Of these, a few are "canon". At the other extreme there'd be borderline
apocryphal stuff such as the Kernel in D chapter. Finally, the bulk of it is annotated folklore
(idioms and patterns known by D's early adopters but not yet by the wider community), mixed
with the author's own insights for good measure. Such a collection of relevant, high-impact
topics is difficult to find collected, let alone in book format. You should read this book if you
want to ramp up to using D in industrial-strength applications.



Adam's style is refreshing for someone like me; I've been involved in a mix of language design
and language advocacy for years now, both fields of considerable subjectivity and fervor. Adam's
dispassionate take on language advocacy is a breath of fresh air. His passion is expended on
building great systems, and the language is but a means to that end. If Adam likes a language
feature, he does primarily because he can use it to good effect, and proceeds to illustrate that.
If, on the contrary, he finds a shortcoming, he simply discusses possible workarounds; that, and
the missing lamentations, wonderfully imply that the point of it all is to get work done. "There is
one disadvantage", Adam notes in a sidebar, "to operator overloading being implemented with
templates, though: the operator overload functions cannot be virtual." Before even finishing
that sentence, I've evoked in my mind enough pros and cons for a lively talk show debate.

He's unfazed: "To work around this, write the overload implementation as a final method

which merely forwards the request to a virtual method."

Last but not least, | took pleasure with the varying "zoom level" of the book. Like a philosopher
who also knows his way around a welding machine, Adam can discuss esoteric code generation
topics and show code disassembly, sometimes within the same chapter (see for example, "Code
Generation") and all in style, while illustrating a good point. Wherever you dwell on the high-level/
low-level continuum, it's likely you'll find ways to expand your range by reading D Cookbook.

Many years ago, while in the military, | learned to shoot the famed Kalashnikov AK47. | was
bad at shooting from the hip (which is odd because everybody in the movies is great at it) until
one day | learned a trick that was doing the rounds—wrap the weapon's strap tightly around
the left arm at the elbow. The extra tension increases hand stability. That hack worked great;
yet it was not to be found in any doctrine or manual, and in fact | couldn't find much about it
today on the Internet. D Cookbook reminds me of that hack—it contains advice that's hard to
find in the official documentation, and of immense practical utility. If you want to work in D,
you'll find this book a great companion.

Andrei Alexandrescu, PhD

Research Scientist, Facebook
Author of The D Programming Language
San Francisco, CA, 12th May 2014
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Preface

The D programming language's popularity is growing rapidly. With its seamless blending of
high-level convenience with low-level power and efficiency, D is suitable for tackling almost
any programming task productively. This book comes out of years of experience of using D
in the real world and closely following the language and libraries' development. It will also
help you get up to speed with this exciting language and burgeoning ecosystem.

What this book covers

Chapter 1, Core Tasks, will get you started with D and cover the tasks you can perform
with D's core language features that differ from other popular programming languages.

Chapter 2, Phobos - The Standard Library, introduces you to the standard D library to

perform common tasks, including generating random numbers, writing a network client
and server, and performing type conversions.

Chapter 3, Ranges, covers the range concept, which is central to D algorithms. Ranges

allow you to write and consume generators, views on various collections, and perform
generic transformations of data.

Chapter 4, Integration, explores integrating D with the outside world, including creating
Windows-based applications, using C libraries, and extending C++ applications with D.

Chapter 5, Resource Management, discusses how to manage memory and other resources
in D, including tips on why, when, and how to use the garbage collector effectively.

Chapter 6, Wrapped Types, dives into the world of user-defined types, showing you how to
extend and restrict types via cheap wrapper abstractions.

Chapter 7, Correctness Checking, shows how to use D's bug-hunting features such as
testing, assertions, and documentation, and the correct way to do conditional compilation.

Chapter 8, Reflection, teaches you about the rich introspection capabilities D provides,
including tips learned through years of experience which stretch the limits of the language.
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Chapter 9, Code Generation, demonstrates several techniques to automate the creation
of new code to write efficient, generic, and specialized code, including a primer on creating
your own mini languages inside D.

Chapter 10, Multitasking, introduces you to the options D offers for concurrency and parallelism.

Chapter 11, D for Kernel Coding, will get you started with writing bare metal code in D, stripping
out the runtime library to say hello directly through the PC's video hardware and then handling
interrupts sent back by the keyboard with D's low-level features.

Chapter 12, Web and GUI Programming, showcases some of the libraries I've written over
the years that show how to make a dynamic website and desktop graphics windows while
discussing my practical experience from writing these libraries, which will give you a leg up
when you write your own code.

Appendix, Addendum, briefly shows how to use D on ARM processors, including systems
without an operating system, and other small topics that didn't fit elsewhere in the book.

What you need for this book

You need to have a Windows or Mac PC that is capable of running the DMD compiler, which is
available at http://dlang.org/.

Who this book is for

This book is for programmers who want to continue their professional development by learning
more about D. Whether you are looking at D for the first time or have used it before and want to
learn more, this book has something to offer you.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Add a struct to test .d,
which uses alias this to activate subtyping."

A block of code is set as follows:

import project.foo;; // disambiguate with project.foo
import bar; // you can disambiguate calls with the name bar
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Any command-line input or output is written as follows:
coffimplib myfile.lib

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Running the program will
print Hello, world! in green text on a red background."

% Warnings or important notes appear in a box like this.

= ~‘|
Tips and tricks appear like this. T
L

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
accountat http://www.packtpub.com. If you purchased this book elsewhere, you can

visithttp://www.packtpub.com/support and register to have the files e-mailed directly
to you.




