A -: 0 ¥ '
y Al .
Ll
AN
» { ’ ' ._ LB L | .‘,‘
" ft T A
'.y il ! 4 ATk ‘.
pite st b ..
‘4 * 1129 . i ‘
. ! 13 i .
. ; "_
{ L} L 4 : 1 3
. 53 -
. i ‘e
- 5 R e
7 " ~ . ' i SRRy \
. bl st pwrmmase - | - S e s m
aaipmiiintli Ml ‘ it e "‘mﬁh..

Quick answers to common problems

D Cookbook

‘ Discover the advantages of programming in D with over
100 incredibly effective recipes

Foreword by Andrei Alexandrescu, Author of The D Programming Language

Adam D. Ruppe [] open source

community experience distilled

PUBLISHING

D Cookbook

Discover the advantages of programming in D with
over 100 incredibly effective recipes

Adam D. Ruppe

open source

community experience distilled

PUBLISHING
BIRMINGHAM - MUMBAI

D Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2014

Production Reference: 1190514

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78328-721-5
www . packtpub.com

Cover Image by Dennis Ruppe (dennis. ruppe@gmail . com)

Credits

Author Copy Editors
Adam D. Ruppe Alisha Aranha

Roshni Banerjee

Reviewers Mradula Hegde

Andrei Alexandrescu

Brad Anderson

Project Coordinator
Maxim Fomin Amey Sawant
Kai Nacke
Proofreaders
Commissioning Editor Simran Bhogal
Sam Birch Paul Hindle
Acquisition Editor Indexer
Sam Birch Priya Subramani
Content Development Editor Production Coordinators
Sriram Neelakantan Manu Joseph
Nitesh Thakur
Technical Editors
Krishnaveni Haridas Cover Work
Monica John Manu Joseph

Edwin Moses

Shiny Poojary

Foreword

There is an immediacy and a delicious sense of urgency running through Adam'’s book that
makes the very notion of its foreword almost offensive. "Let's go implement some great ideas",
the book seems to rejoice at every page; "l know you don't have the patience but read me first,
this may help." | wouldn't want to hold you much with a fluffy, needless opener for a book that
in turn frames itself as a prelude to many enjoyable hours of spinning code. I'll try to keep this
short and to the point—much in the spirit of the book itself.

D Cookbook aims at enabling you to get work done using D, and it is written from the
perspective of one who's clearly walking the walk. | know that Adam has leveraged D for years in
his consulting gigs, but even if | didn't, | would have inferred this easily. He writes in the factual,
no-nonsense tone of the senior engineer who wants to bring a nOOb up to speed so they can
get good work done together. Adam's use of "you" and "we" nicely orients himself and the reader
toward solving a problem together. He's not coy to just tell the reader what to do to accomplish

a task, but never comes across as patronizing. Simple explanations pepper the recipes, and
there's always an implied "here's something | tried and works well, you may find that useful”
lurking in the subtext.

The book covers a variety of topics that appear to be only loosely connected: what do (to quote
a few consecutive chapter titles) "Ranges", "Integration” (with platforms and other languages),
"Resource Management", and "Wrapped Types" have in common? Usefulness, that's what.

Such topics, and everything else that the book sets out to explain, are likely to be important in
real-world D applications. Of these, a few are "canon". At the other extreme there'd be borderline
apocryphal stuff such as the Kernel in D chapter. Finally, the bulk of it is annotated folklore
(idioms and patterns known by D's early adopters but not yet by the wider community), mixed
with the author's own insights for good measure. Such a collection of relevant, high-impact
topics is difficult to find collected, let alone in book format. You should read this book if you
want to ramp up to using D in industrial-strength applications.

Adam's style is refreshing for someone like me; I've been involved in a mix of language design
and language advocacy for years now, both fields of considerable subjectivity and fervor. Adam's
dispassionate take on language advocacy is a breath of fresh air. His passion is expended on
building great systems, and the language is but a means to that end. If Adam likes a language
feature, he does primarily because he can use it to good effect, and proceeds to illustrate that.
If, on the contrary, he finds a shortcoming, he simply discusses possible workarounds; that, and
the missing lamentations, wonderfully imply that the point of it all is to get work done. "There is
one disadvantage", Adam notes in a sidebar, "to operator overloading being implemented with
templates, though: the operator overload functions cannot be virtual." Before even finishing
that sentence, I've evoked in my mind enough pros and cons for a lively talk show debate.

He's unfazed: "To work around this, write the overload implementation as a final method

which merely forwards the request to a virtual method."

Last but not least, | took pleasure with the varying "zoom level" of the book. Like a philosopher
who also knows his way around a welding machine, Adam can discuss esoteric code generation
topics and show code disassembly, sometimes within the same chapter (see for example, "Code
Generation") and all in style, while illustrating a good point. Wherever you dwell on the high-level/
low-level continuum, it's likely you'll find ways to expand your range by reading D Cookbook.

Many years ago, while in the military, | learned to shoot the famed Kalashnikov AK47. | was
bad at shooting from the hip (which is odd because everybody in the movies is great at it) until
one day | learned a trick that was doing the rounds—wrap the weapon's strap tightly around
the left arm at the elbow. The extra tension increases hand stability. That hack worked great;
yet it was not to be found in any doctrine or manual, and in fact | couldn't find much about it
today on the Internet. D Cookbook reminds me of that hack—it contains advice that's hard to
find in the official documentation, and of immense practical utility. If you want to work in D,
you'll find this book a great companion.

Andrei Alexandrescu, PhD

Research Scientist, Facebook
Author of The D Programming Language
San Francisco, CA, 12th May 2014

About the Author

Adam D. Ruppe is a professional software developer living in Watertown, New York. He
started programming PCs in high school, writing assembly language, and later C and C++,
using the Digital Mars compiler to build programs based on MS DOS on a hand-me-down
computer. Programming in the DOS environment with the slow computer gave him early
practical experience in low-level and efficient code—skKills he carries on developing today.

After finishing school, he started doing web programming—initially with PHP. While he'd
make it work, he often found himself longing for the good old days. One day, he decided
to check back with the vendor of his old compiler and discovered the D programming
language (well before it reached 1.01!).

He was enamored with it and used it to write some games, and then started writing

web libraries to use it for work too, to replace PHP. He found success in this endeavor
in early 2009.

Combining his pioneering spirit with his blend of low-level and high-level programming

experience, he was able to forge ahead with D, taking it to places many people didn't
believe possible.

About the Reviewers

Andrei Alexandrescu coined the colloquial term "modern C++", which is used today

to describe a collection of important C++ styles and idioms. His book on the topic, Modern

C++ Design: Generic Programming and Design Patterns Applied (Addison-Wesley, 2001),
revolutionized C++ programming and produced a lasting influence not only on subsequent work
on C++, but also on other languages and systems. With Herb Sutter, he is also the co-author of
C++ Coding Standards: 101 Rules, Guidelines, and Best Practices (Addison-Wesley Professional,
2010). He has garnered a solid reputation in both industrial and academic circles through his
varied work on libraries and applications, as well as research in machine learning and natural
language processing. From 2006, he worked on the D programming language together with
Walter Bright, the inventor and initial implementer of the language. He co-designed many
important features of D, authored a large part of D's standard library, and wrote the book

The D Programming Language (Addison-Wesley Professional, 2010). Andrei holds a PhD

in Computer Science from the University of Washington and a B.Sc. in Electrical Engineering
from University Politehnica of Bucharest. He works as a research scientist for Facebook.

Brad Anderson is a computer programmer living in Salt Lake City. He has been writing

software professionally for over 10 years and is currently a Lead Developer at Phoenix Project
Management Systems.

Maxim Fomin is a programmist who is currently living and working in St. Petersburg,
Russia. Coming with a background in other languages, he quickly recognized D programming
language for its convenience, efficiency, and power synthesis. He helped a company to apply
D language in writing software in an area of his professional interest—Finance.

I would like to thank my family for helping and encouraging me in times of
difficulties and pessimism. | would also like to thank all the mentors that
I've had over the years. Without their assistance, | would not have acquired
knowledge and skills that | possess today.

Kai Nacke is the current maintainer of LDC, the LLVM-based D compiler. He has a strong
interest in compiler construction and is also a contributor to the LLVM framework. In 1998,
he received his Master of Computer Science degree. He is an IT architect at IBM and has

over 10 years of experience in architecturing solutions and developing custom applications.

www.PacktPub.com

Support files, eBooks, discount offers, and more

You might want to visit www. PacktPub . com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www . Packt Pub. com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
serviceepacktpub.com for more details.

At www . Packt Pub. com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

[B]PACKT)

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
» Fully searchable across every book published by Packt
» Copy and paste, print and bookmark content

» Ondemand and accessible via web browser

Free Access for Packt account holders

If you have an account with Packt at www . PacktPub . com, you can use this to access

PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents

Preface 1
Chapter 1: Core Tasks 5
Introduction 5
Installing the compiler and writing a "Hello World" program 6
Adding additional modules (files) to your program 8
Using external libraries 10
Building and processing arrays 13
Using associative arrays to translate input 15
Creating a user-defined vector type 18
Using a custom exception type 21
Understanding immutability 23
Slicing a string to get a substring 26
Creating a tree of classes 28
Chapter 2: Phobos - The Standard Library 33
Introduction 34
Performing type conversions 34
Finding the largest files in a directory 35
Creating a network client and server 38
Using Base64 to create a data URI 42
Generating random numbers 44
Normalizing a string and performing Unicode comparisons 47
Searching with regular expressions 49
Writing a digest utility 51
Using the std.zlib compression 53

Using the std.json module

54

Table of Contents

Chapter 3: Ranges 57
Introduction 57
Using ranges when implementing an algorithm 58
Creating an input range 62
Creating an output range 66
Creating a higher-order range 69
Putting a range interface on a collection 72
Creating an input range over a tree structure 75
Using runtime polymorphic (class) ranges 79
Storing a range as a data member 80
Sorting ranges efficiently 82
Searching ranges 85
Using functional tools to query data 86

Chapter 4: Integration 89
Introduction 89
Calling the Windows API functions 90
Removing the Windows console 92
Making Linux system calls 93
Writing part of a C program in D 96
Interfacing with C++ 99
Using structs to mimic the C++ object structure 104
Communicating with external processes 107
Communicating with a dynamic scripting language 108
Using Windows' COM 112

Chapter 5: Resource Management 117
Introduction 117
Avoiding the garbage collector 117
Making a reference-counted object 119
Manually managing class memory 121
Using scope guards to manage transactions 123
Creating an array replacement 125
Managing lent resources 130
Creating a NotNull struct 130
Using unique pointers 134
Using RAIl and handling the limitations of class destructors 136

Chapter 6: Wrapped Types 137
Introduction 137
Creating a struct with reference semantics 138
Simulating inheritance with structs 139
Creating a ranged integer 140

Table of Contents

Creating an opaque handle type 145
Creating a subtyped string for i18n 148
Forwarding methods with opDispatch 150
Creating a tagged dynamic type 152
Creating a structure with two views into the same data 155
Simulating multiple inheritance with mixin templates 157
Chapter 7: Correctness Checking 161
Introduction 161
Using assertions and exceptions 162
Using static asserts 164
Using template constraints and static if 167
Preventing memory corruption bugs with @safe 173
Leveraging const-correctness 176
Avoiding side effects of pure functions 180
Verifying object invariants and pre- and post-conditions i81
Unit testing your code 183
Documenting your code with Ddoc 185
Writing platform-specific code (versions) and per-client
configuration modules 189
Chapter 8: Reflection 193
Introduction 193
Getting dynamic runtime type information 194
Getting a list of child classes 196
Determining whether a module is available 198
Getting a list of all methods or fields in a module or an object 200
Inspecting function overloads 206
Determining names, types, and default values of function parameters 207
Getting components of complex types 210
Using user-defined attributes 214
Implementing a custom lint-style check for virtual functions 216
Extending the runtime type information 219
Creating a command-line function caller 223
Chapter 9: Code Generation 231
Introduction 231
Creating user-defined literals 232
Parsing a domain-specific language 235
Generating data structures from text diagrams 239
Automating dynamic calls with multiple dispatch 242
Building a lookup table 246

Using string parameters to change functions

247

Table of Contents

Wrapping instance methods 248
Using opDispatch to generate properties 252
Duck typing to a statically-defined interface 254
Chapter 10: Multitasking 261
Introduction 261
Using threads 262
Passing messages with std.concurrency 265
Processing parallel data with std.parallelism 267
Using fibers 269
Creating new processes 271
Exploring thread-safe, single-locking singletons 274
Using asynchronous 1/0 276
Chapter 11: D for Kernel Coding 279
Introduction 279
Running D on bare metal x86 with a stripped runtime 279
Adding interrupt handling to the bare metal x86 code 288
Chapter 12: Web and GUI Programming 297
Introduction 297
Creating a dynamic website with cgi.d 298
Creating a web API with web.d 301
Parsing and modifying an HTML page with dom.d 303
Accessing a SQL database 308
Sending an e-mail 312
Writing colored output to the console 315
Getting real-time input from the terminal 316
Working with image files 318
Creating a graphics window to show a TV static demo 320
Creating an OpenGL window 324
Appendix: Addendum 327
Compiling D for ARM/Linux Raspberry Pi 327
Running D on bare metal ARM 329
Using the exponentiation operator 332
Getting a stack trace without throwing an exception 333
Finding more information about D 334
Index 337

Preface

The D programming language's popularity is growing rapidly. With its seamless blending of
high-level convenience with low-level power and efficiency, D is suitable for tackling almost
any programming task productively. This book comes out of years of experience of using D
in the real world and closely following the language and libraries' development. It will also
help you get up to speed with this exciting language and burgeoning ecosystem.

What this book covers

Chapter 1, Core Tasks, will get you started with D and cover the tasks you can perform
with D's core language features that differ from other popular programming languages.

Chapter 2, Phobos - The Standard Library, introduces you to the standard D library to

perform common tasks, including generating random numbers, writing a network client
and server, and performing type conversions.

Chapter 3, Ranges, covers the range concept, which is central to D algorithms. Ranges

allow you to write and consume generators, views on various collections, and perform
generic transformations of data.

Chapter 4, Integration, explores integrating D with the outside world, including creating
Windows-based applications, using C libraries, and extending C++ applications with D.

Chapter 5, Resource Management, discusses how to manage memory and other resources
in D, including tips on why, when, and how to use the garbage collector effectively.

Chapter 6, Wrapped Types, dives into the world of user-defined types, showing you how to
extend and restrict types via cheap wrapper abstractions.

Chapter 7, Correctness Checking, shows how to use D's bug-hunting features such as
testing, assertions, and documentation, and the correct way to do conditional compilation.

Chapter 8, Reflection, teaches you about the rich introspection capabilities D provides,
including tips learned through years of experience which stretch the limits of the language.

Preface

Chapter 9, Code Generation, demonstrates several techniques to automate the creation
of new code to write efficient, generic, and specialized code, including a primer on creating
your own mini languages inside D.

Chapter 10, Multitasking, introduces you to the options D offers for concurrency and parallelism.

Chapter 11, D for Kernel Coding, will get you started with writing bare metal code in D, stripping
out the runtime library to say hello directly through the PC's video hardware and then handling
interrupts sent back by the keyboard with D's low-level features.

Chapter 12, Web and GUI Programming, showcases some of the libraries I've written over
the years that show how to make a dynamic website and desktop graphics windows while
discussing my practical experience from writing these libraries, which will give you a leg up
when you write your own code.

Appendix, Addendum, briefly shows how to use D on ARM processors, including systems
without an operating system, and other small topics that didn't fit elsewhere in the book.

What you need for this book

You need to have a Windows or Mac PC that is capable of running the DMD compiler, which is
available at http://dlang.org/.

Who this book is for

This book is for programmers who want to continue their professional development by learning
more about D. Whether you are looking at D for the first time or have used it before and want to
learn more, this book has something to offer you.

Conventions

In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames,
dummy URLs, user input, and Twitter handles are shown as follows: "Add a struct to test .d,
which uses alias this to activate subtyping."

A block of code is set as follows:

import project.foo;; // disambiguate with project.foo
import bar; // you can disambiguate calls with the name bar

Preface

Any command-line input or output is written as follows:
coffimplib myfile.lib

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Running the program will
print Hello, world! in green text on a red background."

% Warnings or important notes appear in a box like this.

= ~‘|
Tips and tricks appear like this. T
L

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www . packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for all Packt books you have purchased from your
accountat http://www.packtpub.com. If you purchased this book elsewhere, you can

visithttp://www.packtpub.com/support and register to have the files e-mailed directly
to you.

