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Introduction

Martingales (with discrete time) lie at the centre of this book. They are known
to have major applications to virtually every corner of probability theory. Our
central theme is their applications to the geometry of Banach spaces.

We should emphasize that we do not assume any knowledge about scalar
valued martingales. Actually, the beginning of this book gives a self-contained
introduction to the basic martingale convergence theorems for which the use
of the norm of a vector valued random variable instead of the modulus of a
scalar one makes little difference. Only when we consider the ‘boundedness
implies convergence’ phenomenon does it start to matter. Indeed, this requires
the Banach space B to have the Radon-Nikodym property (RNP). But even at
this point, the reader who wishes to concentrate on the scalar case could simply
assume that B is finite-dimensional and disregard all the infinite-dimensional
technical points. The structure of the proofs remains pertinent if one does so.
In fact, it may be good advice for a beginner to do a first reading in this way.
One could argue similarly about the property of ‘unconditionality of martingale
differences’ (UMD): although perhaps the presence of a Banach space norm
is more disturbing there, our reader could assume at first reading that B is a
Hilbert space, thus getting rid of a number of technicalities to which one can
return later.

A major feature of the UMD property is its equivalence to the boundedness of
the Hilbert transform (HT). Thus we include a substantial excursion in (Banach
space valued) harmonic analysis to explain this.

Actually, connections with harmonic analysis abound in this book, as we
include a rather detailed exposition of the boundary behaviour of B-valued har-
monic (resp. analytic) functions in connections with the RNP (resp. analytic
RNP) of the Banach space B. We introduce the corresponding B-valued Hardy
spaces in analogy with their probabilistic counterparts. We are partly motivated

X



Introduction Xi

by the important role they play in operator theory, when one takes for B the
space of bounded operators (or the Schatten p-class) on a Hilbert space.

Hardy spaces are closely linked with martingales via Brownian motion:
indeed, for any B-valued bounded harmonic (resp. analytic) function u on the
unit disc D, the composition (#(W;»7) )0 of u with Brownian motion stopped
before it exits D is an example of a continuous B-valued martingale, and its
boundary behaviour depends in general on whether B has the RNP (resp. ana-
lytic RNP). We describe this connection with Brownian motion in detail, but we
refrain from going too far on that road, remaining faithful to our discrete time
emphasis. However, we include short sections summarizing just what is neces-
sary to understand the connections with Brownian martingales in the Banach
valued context, together with pointers to the relevant literature. In general, the
sections that are a bit far off our main goals are marked by an asterisk. For
instance, we describe in §7.1 the Banach space valued version of Fefferman’s
duality theorem between H' and BMO. While this is not really part of martin-
gale theory, the interplay with martingales, both historically and heuristically,
is so obvious that we felt we had to include it. The asterisked sections could be
kept for a second reading.

In addition to the RN and UMD properties, our third main theme is
super-reflexivity and its connections with uniform convexity and smoothness.
Roughly, we relate the geometric properties of a Banach space B with the study
of the p-variation

SO = (XM~ i)

of B-valued martingales (f,). Depending on whether S,(f) € L, is necessary
or sufficient for the convergence of (f,) in L,(B), we can find an equivalent
norm on B with modulus of uniform convexity (resp. smoothness) ‘at least as
good as’ the functiont — 7.

We also consider the strong p-variation

1
= s (e~ fuanly)
0=n0)<n(l)<n(2)<---

of a martingale. For that topic (exceptionally) we devote an entire chapter only
to the scalar case. Our crucial tool here is the ‘real interpolation method’. Real
and complex interpolation in general play an important role in L,-space the-
ory, so we find it natural to devote a significant amount of space to these two
‘methods’.

We allow ourselves several excursions aiming to illustrate the efficiency of
martingales, for instance to the concentration of measure phenomenon. We also
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describe some exciting recent work on non-linear properties of metric spaces
analogous to uniform convexity/smoothness and type for metric spaces.

We originally intended to include in this book a detailed presentation of ‘non-
commutative’ martingale theory, but that part became so big that we decided
to make it the subject of a (hopefully forthcoming) separate volume to be pub-
lished, perhaps on the author’s web page. We merely outline its contents in the
last chapter, devoted to non-commutative L,-spaces. There the complex inter-
polation method becomes a central tool.

The book should be accessible to graduate students, requiring only the basics
of real and complex analysis (mainly Lebesgue integration) and basic func-
tional analysis (mainly duality, the weak and strong topologies and reflexiv-
ity of Banach spaces). Our choice is to give fully detailed proofs for the main
results and to indicate references to the refinements in the ‘Notes and Remarks’
or the asterisked sections. We strive to make the presentations self-contained,
and when given a choice, we opt for simplicity over maximal generality. For
instance, we restrict the Banach space valued harmonic analysis to functions
with domains in the unit disc D or the upper half-plane U in C (or their bound-
ary dD = T or dU = R). We feel the main ideas are easier to grasp in the real
or complex uni-dimensional case.

The topics (martingales, H”-space theory, interpolation, Banach space geom-
etry) are quite diverse and should appeal to several distinct audiences. The main
novelty is the choice to bring all these topics together in the various parts of this
single volume. We should emphasize that the different parts can be read inde-
pendently, and each time their start is introductory.

There are natural groupings of chapters, such as 1-2-10-11 or 3-4-5-6 (possi-
bly including parts of 1 and 2, but not necessarily), which could form the basis
for a graduate course.

Depending on his or her background, a reader is likely to choose to con-
centrate on different parts. We hope probabilist graduate students will ben-
efit from the detailed introductory presentation of basic H”-space theory, its
connections with martingales, the links with Banach space geometry and the
detailed treatment of interpolation theory (which we illustrate by applications
to the strong p-variation of martingales), while graduate students with interest
in functional analysis and Banach spaces should benefit more from the initial
detailed presentation of basic martingale theory. In addition, we hope to attract
readers with interest in computer science wishing to see the sources of the var-
ious recent developments on finite metric spaces described in Chapter 13. A
reader with an advanced knowledge of harmonic analysis and H”-theory will
probably choose to skip the introductory part on that direction, which is written
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with non-specialists in mind, and concentrate on the issues specific to Banach
space valued functions related to the UMD property and the Hilbert transform.

The choice to include so much background on the real and complex interpo-
lation methods in Chapter 8 is motivated by its crucial importance in Banach
space valued L,-space theory, which, in some sense, is the true subject of this
book.

Acknowledgement. This book is based on lecture notes for various topics
courses given during the last 10 years or so at Texas A&M University. Thanks
are due to Robin Campbell, who typed most on them, for her excellent work.
I am indebted to Hervé Chapelat, who took notes from my even earlier lec-
tures on HP-spaces there, for Chapters 3 and 4. The completion of this vol-
ume was stimulated by the Winter School on ‘Type, cotype and martingales
on Banach spaces and metric spaces’ at IHP (Paris), 2—8 February 2011, for
which I would like to thank the organizers. I am very grateful to all those who,
at some stage, helped me to correct mistakes and misprints and who suggested
improvements of all kinds, in particular Michael Cwikel, Sonia Fourati, Julien
Giol, Rostyslav Kravchenko, Bernard Maurey, Adam Os¢kowski, Javier Parcet,
Yanqgi Qiu, Mikael de la Salle, Francisco Torres-Ayala, Mateusz Wasilewski,
and Quanhua Xu; S. Petermichl for help on Chapter 6; and M. 1. Ostrovskii for
advice on Chapter 13. I am especially grateful to Mikael de la Salle for drawing
all the pictures with TikZ.
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We will now review the contents of this book chapter by chapter.

Chapter 1 begins with preliminary background: we introduce Banach space
valued L,-spaces, conditional expectations and the central notion in this book,
namely Banach space valued martingales associated to a filtration (A, ),>o on
a probability space (€2, A, ). We describe the classical examples of filtrations
(the dyadic one and the Haar one) in §1.4. If B is an arbitrary Banach space
and the martingale (f,) is associated to some f in L,(B) by f, = E4(f) (1 <
p < 00), then, assuming A = A, for simplicity, the fundamental convergence
theorems say that

h—>f

both in L,(B) and almost surely (a.s.).

The convergence in L,(B) is Theorem 1.14, while the a.s. convergence is
Theorem 1.30. The latter is based on Doob’s classical maximal inequalities
(Theorem 1.25), which are proved using the crucial notion of stopping time.
We also describe the dual form of Doob’s inequality due to Burkholder-Davis-
Gundy (see Theorem 1.26). Doob’s maximal inequality shows that the con-
vergence of f, to f in L,(B) ‘automatically’ implies a.s. convergence. This,
of course, is special to martingales, but in general it requires p > 1. However,
for martingales that are sums of independent, symmetric random variables (Y,,)
(i.e. we have f, = }:',' Y;), this result holds for 0 < p < 1 (see Theorem 1.40).
It also holds, roughly, for p = 0. This is the content of the celebrated Ito-Nisio
theorem (see Theorem 1.43), which asserts that even a weak form of conver-
gence of the series f, = )| ¥ implies its a.s. norm convergence.

In §1.8, we prove, again using martingales, a version of Phillips’s theorem.
The latter is usually stated as saying that, if B is separable, any countably addi-
tive measure on the Borel o -algebra of B is ‘Radon’, i.e. the measure of a Borel

Xiv
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subset can be approximated by that of its compact subsets. In §1.9, we prove
the strong law of large numbers using the a.s. convergence of reverse B-valued
martingales. In §1.10, we give a brief introduction to continuous-time mar-
tingales. We mainly explain the basic approximation technique by which one
passes from discrete to continuous parameter.

To get to a.s. convergence, all the preceding results need to assume in the
first place some form of convergence, €.g. in L,(B). In classical (i.e. real val-
ued) martingale theory, it suffices to assume boundedness of the martingale
{fu}in L, (p > 1) to obtain its a.s. convergence (as well as norm convergence,
if | < p < 00). However, this ‘boundedness = convergence’ phenomenon no
longer holds in the B-valued case unless B has a specific property called the
Radon-Nikodym property (RNP in short), which we introduce and study in
Chapter 2. The RNP of a Banach space B expresses the validity of a certain form
of the Radon-Nikodym theorem for B-valued measures, but it turns out to be
equivalent to the assertion that all martingales bounded in L,(B) converge a.s.
(and in L,(B) if p > 1) for some (or equivalently all) I < p < co. Moreover,
the RNP is equivalent to a certain ‘geometric’ property called ‘dentability’. All
this is included in Theorem 2.9. The basic examples of Banach spaces with the
RNP are the reflexive ones and separable duals (see Corollary 2.15).

Moreover, a dual space B* has the RNP iff the classical duality L,(B)* =
Ly (B*) is valid for some (or all) 1 < p < oo with % + % =1 (see Theo-
rem 2.22). Actually, for a general B, one can also describe L,(B)* as a space
of martingales bounded in L, (B*), but in general, the latter is larger than the
(Bochner sense) space L, (B*) itself (see Proposition 2.20). In many situations,
it is preferable to have a description of L,(B)* as a space of B*-valued mea-
sures or functions (rather than martingales). For that purpose, we give in §2.4
two alternate descriptions of the latter space, either as a space of B*-valued
vector measures, denoted by A, (B*), or, assuming B separable, as a space of
weak* measurable B*-valued functions denoted by A o (B*).

In §2.5, we discuss the Krein-Milman property (KMP): this says that any
bounded closed convex set C C Bis the closed convex hull of its extreme points.
This is closely related to dentability, but although it is known that RNP = KMP
(see Theorem 2.34), the converse implication is still open.

In §2.6, we present a version of Choquet’s representation theorem of the
points of C as barycenters of measures supported by the extreme points. Cho-
quet’s classical result applies only to convex compact sets, while this version
requires that the closed bounded separable convex set C lies in an RNP space.
The proof is based on martingale convergence.

In §2.7, we prove that, if B is separable, a bounded B-valued vector mea-
sure admits a RN density iff the associated linear operator L; — B factorizes
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through the space £, of absolutely summable scalar sequences. This fact (due
to Lewis and Stegall) is remarkable because £, is the prototypical example of a
separable dual (a fortiori £; has the RNP). In other words, if B has the RNP, the
bounded B-valued vector measures ‘come from’ £, valued vector measures, and
the latter are differentiable since ¢, itself has the RNP. There is also a version
of this result when B is not separable (see Theorem 2.39).

In Chapter 3, we introduce the Hardy space A”(D; B) (1 < p < oo) formed
of all the B-valued harmonic functions #: D — B (on the unitdisc D C C) such
that

1/p
"u”h”(DJ}) = SUPg .y~ (f |lu(re”)|1”dm(t)) < Q.

When p = o0, this is just the space of bounded harmonic functions u: D — B.

In analogy with the martingale case treated in Chapter 1, to any fin L,(T: B),
we can associate a harmonic function u: D — B that extends f in the sense that
u(re) — f(e") for almost all e in 9D = T, and also (if p < 00)

f lu(re®) — fe)IPdm(t) = 0

when r 1 1 (see Theorem 3.1). The convergence at almost all boundary points
requires a specific radial maximal inequality, which we derive from the classical
Hardy-Littlewood maximal inequality. Actually, we present this in the frame-
work of ‘non-tangential’ maximal inequalities. The term ‘non-tangential’ refers
to the fact that we study the limit of u(z) (in the norm of B) when z tends to "
but staying inside a cone with vertex ¢ and opening angle f < .

This topic is closely linked with Brownian motion (see especially [176]).
Indeed, the paths of a complex valued Brownian motion (W, ),~¢ (starting at the
origin) almost surely cross the boundary of the unit disc D in finite time, and
if we define 7, = inf{r > ()llW,l = r}, then for any u in A”(D; B), the random
variables {u(Wr,) | 0 < r < 1} form a martingale bounded in L,(B), for which
the maximal function is closely related to the non-tangential one of u.

In general, the latter B-valued martingales do not converge. However, we
show in Corollary 3.31 that they do so if B has the RNP. Actually, the RNP of B
is equivalent to the a.e. existence of radial (or non-tangential) limits or of limits
along almost all Brownian paths, for the functions in h”(D; B) (1 < p < 00)
(see Theorem 3.25 and Corollary 3.31 for this). In the supplementary §4.7,
we compare the various modes of convergence to the boundary, radial, non-
tangential or Brownian for a general B-valued harmonic function. This brief
§4.7 outlines some beautiful work by Burkholder, Gundy and Silverstein [176]
and Brossard [148].
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In Chapter 4 we turn to the subspace HP(D; B) C h”(D; B) formed of all
the analytic B-valued functions in h”(D; B). One major difference is that the
(radial or non-tangential) maximal inequalities now extend to all values of p
including 0 < p < 1. To prove this, we make crucial use of outer functions; this
gives us a convenient factorization of any f in H”(D; B) as a product f = Fg
with a scalar valued F in H? and g in H*(D; B) (see Theorem 4.15). The
Hardy spaces H?(D; B) naturally lead us to a more general form of RNP called
the analytic RNP (ARNP in short). This is equivalent to the a.e. existence of
radial (or non-tangential) limits for all functions in H?(D; B) for some (or all)
0 < p < oo. Thus we have RNP = ARNP, but the converse fails, for instance
(see Theorem 4.32) B = L ([0, 1]) has the ARNP but not the RNP. On the mar-
tingale side, the strict inclusion

{analytic} G {harmonic)

admits an analogue involving the notion of ‘analytic martingale’ or ‘Hardy
martingale’, and the convergence of the latter (with the usual bounds) is
equivalent to the ARNP (see Theorem 4.30). In §4.6 we briefly review the
analogous Banach space valued H?-space theory for functions on the upper
half-plane

U ={z e C|3(z) > 0}

Chapter 5 is devoted to the UMD property. After a brief presentation of
Burkholder’s inequalities in the scalar case, we concentrate on their analogue
for Banach space valued martingales ( f,,). In the scalar case, when | < p < oo,
we have

sup [l fullp = I sup | fulllp = 1SCHNp,

where S(f) = (Ifol* + X Ifu — fu1[$)'/%, and where A, ~ B, means that
there are positive constants C), and C} such that C)A, < B, < CJA,. In the
Banach space valued case, we replace S(f) by

. 0y 1/2
R(f)(@) = supy ( [ w1+ ¥ entts = s dv) o

where v is the uniform probability measure on the set A of all choices of signs
(&p)n with g, = £1.

In §5.2 we prove Kahane’s inequality, i.e. the equivalence of all the L,-norms
for series of the form Z‘Ix’ enxn With x,, in an arbitrary Banach space when 0 <
p < o0 (see (5.16)); in particular, up to equivalence, we can substitute to the
L-norm in (1) any other L,-norm for p < o0.
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Let {x,} be a sequence in a Banach space such that the series ) | &,x, converges
almost surely. We set

Rt = | [ [ ewss

With this notation we have

R(f)(@) = R({ fo(w), fi(@) — fo(w), fo(@) — fi(@), - ]). (2)
The UMD, and UMD properties are introduced in §5.3. Consider the series

fe=fot Y, ealfa—far): 3)

By definition, when B is UMD, (f,) converges in L,(B) iff (3) converges
in L,(B) for all choices of signs &, = %1 or equivalently iff it converges for
almost all (g,). Moreover, we have then for | < p < oo and all choices of signs
&= (&)

1/2

2
dv

el = 1,8 ),
sup || full, @ = 1RGO - ),

n=0

See Proposition 5.10. The case p = 1 (due to Burgess Davis) is treated in
§5.6. The main result of §5.3 is the equivalence of UMD, and UMD, for any
1 < p, g < oc. We give two proofs of this; the first one is based on distribu-
tional (also called ‘good A’) inequalities. This is an extrapolation principle,
which allows us to show that, for a given Banach space B, (4), = (4), for any
I < p < g. In the scalar case one starts from the case ¢ = 2, which is obvi-
ous by orthogonality, and uses the preceding implication to deduce from it the
case | < p <2 and then 2 < p < oo by duality. We also give a more deli-
cate variant of the extrapolation principle that avoids duality and deduces the
desired inequality for any 1 < p < oo from a certain form of weak-type esti-
mate involving pairs of stopping times (see Lemma 5.26).

The second proof is based on Gundy’s decomposition, which is a martin-
gale version of the Calderén-Zygmund decomposition in classical harmonic
analysis. There one proves a weak-type (1,1) estimate and then invokes the
Marcinkiewicz theorem to obtain the case 1 < p < 2. We describe the latter in
an appendix to Chapter 5.

In §5.8 we show that to check that a space B is UMD, we may restrict our-
selves to martingales adapted to the dyadic filtration, and the associated UMD-
constant remains the same. The proof is based on a result of independent inter-
est: if p < oo, any finite martingale (fo, ..., fy) in L,(B) (on a large enough
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probability space) can be approximated in L,(B) by a subsequence of a dyadic
martingale.

In §5.9 we prove the Burkholder-Rosenthal inequalities. In the scalar case,
this boils down to the equivalence

sup, | fullp = llo (Ol + Il supy [fu — fa-1lllps

where 0 (f) = (|fol2 + X Enilfo — ot )72, valid for 2 < p < 0.

Rosenthal originally proved this when f, is a sum of independent variables,
and Burkholder extended it to martingales. We describe a remarkable example
of complemented subspace of L, (the Rosenthal space X,,), which motivated
Rosenthal’s work.

In §5.10 we describe Stein’s inequality and its B-valued analogue when B
is a UMD Banach space. Let (A,),=0 be a filtration as usual, and let (x,),>0
be now an arbitrary sequence in L,. Lety, = [E4 x,. Stein’s inequality asserts
that for any 1 < p < o0, there is a constant C,, such that

=G

14

(6)

[(Z o) ()"

for any (x,) in L.
For x, in L,(B), with B UMD, the same result remains valid if we replace on
both sides of (6) the expression (3_ |x,|*)!"/? by

([ ‘"Ze,,x,, Z dv)]ﬂ.
See (5.89).

In §5.11 we describe Burkholder’s geometric characterization of UMD
spaces in terms of ¢-convexity (Theorem 5.64). We also include a more recent
result (Theorem 5.69) in the same vein. The latter asserts that a real Banach
space of the form B = X @& X* is UMD iff the function

P

x®& — E(x)

is the difference of two real valued convex continuous functions on B.

We end Chapter 5 by a series of appendices. In §5.12 we prove the hyper-
contractive inequalities on {—1, 1}. In §5.13 we discuss the Holder-Minkowski
inequality, which says that we have a norm 1 inclusion

Ly(m'; Lp(m)) C Ly(m; Ly(m"))

when p > g. In §5.14 we give some basic background on the space weak-
Ly, usually denoted L, «, and §5.16 is devoted to a quick direct proof of
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the Marcinkiewicz theorem. In §5.15 we present a trick frequently used by
Burkholder that we call the reverse Holder principle. Holder’s inequality for a
random variable Z on a probability space tells us that Z € L, = Z € L, when
r < q. The typical reverse Holder principle shows that a suitable L, bound
involving independent copies of Z implies conversely that Z is in weak-L,, (or
L, ~) and a fortiori in L, forall r < g < p.

In the final appendix to this chapter, §5.17, we explain why certain forms
of exponential integrability of a function f can be equivalently reformulated
in terms of the growth of the L,-norms of f. This shows that the growth when
p — oo of the constants in many of the martingale inequalities we consider
often implies an exponential inequality.

In Chapter 6 we start with some background on the Hilbert transform. We
say that a Banach space B is an HT-space if the Hilbert transform on T defines
a bounded operator on L,(T; B) for some (or equivalently all) 1 < p < co. We
then show that UMD and HT are equivalent properties. To show HT = UMD,
we follow Bourgain’s well-known argument (see §6.2). The converse implica-
tion UMD = HT was originally proved using ideas derived from the beautiful
observation that the Hilbert transform can be viewed as a sort of martingale
transform relative to stochastic integrals over Brownian motion. We merely
outline this proof in §6.4, and instead, we present first, in full details the more
recent remarkable proof from Petermichl [378], which uses only martingale
transforms relative to Haar systems, but with respect to a randomly chosen
dyadic filtration (see §6.3).

In §6.5, following Bourgain, we prove that the Littlewood-Paley inequalities
are valid in the B-valued case if B is UMD. More precisely, consider the formal
Fourier series

f=2  fme"
of a function in L,(B), and let
V() = (IF O3 + RUA D> + RUA, DD,

where

A;:_ - Z2"5k<2n+| f(k)ei’“ and A': o Zzns—k<2n+l f(k)eik"

The B-valued version of the Littlewood-Paley inequality is the equivalence of
1fllz, s and IV,

In Theorem 6.35 we show that the analogue of the Hilbert transform for the
compact group {—1, 1}™ (in place of T) is bounded on L,(B) forany 1 < p <
oo iff B is UMD. This is the analogue of the implication UMD = HT, but for
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the Walsh system in place of the trigonometric one. The proof of this case is
much more transparent.

In §6.7, we briefly review the analytic UMD property (AUMD). This is a
weakening of UMD obtained by restricting to either analytic or Hardy mar-
tingales. The latter are discretizations of the B-valued martingales obtained by
composing complex Brownian motion with a B-valued analytic function on D.
The main novelty is that the space B = L, itself has the AUMD property. More-
over, the latter implies the ARNP.

In §7.1 we describe the B-valued version of Fefferman’s famous duality the-
orem between H' and BMO on T (resp. R). This requires that we carefully
identify the various B-valued analogues of the Hardy spaces H' or BMO. If B is
arbitrary, the duality holds provided that we use the atomic version of B-valued
H', denoted by h(T; B) (resp. h),(R; B)); this is the so-called real variable
variant of H', as opposed to the more classical Hardy space of analytic func-
tion, denoted by H'(D; B) (resp. H' (U; B)) on the unit disc D (resp. the upper
half-plane U/). In general, for any f € H'(D; B) (resp. H' (U; B)), the boundary
values of f and its Hilbert transform f are both in h;l(']I‘: B) (resp. h} (R; B)).
When B is UMD (and only then), the converse also holds (see Corollary 7.20).

In §7.3 we discuss the space BMO and the B-valued version of H Uin the
martingale context. This leads naturally to the atomic version of B-valued H',
denoted by 4!, ({.A.}; B) with respect to a filtration {.4,}. Its dual can be identi-
fied with a BMO-space for B*-valued martingales, at least for a ‘regular’ filtra-
tion (A,). Equivalently (see Theorem 7.32), the space hc'z, (B) can be identified
with 71:,‘"“ (B), which is defined as the completion of L;(B) with respect to the
norm f > Esup, || f,]ls (here f, = E4«f).

In §7.5 we show that the classical BMO space coincides with the intersection
of two suitably chosen translates of the dyadic martingale-BMO space.

In Chapter 8 we describe successively the complex and the real method of
interpolation for pairs of Banach spaces (By, B; ) assumed compatible for inter-
polation purposes. The complex interpolation space is denoted by (B, B) )s-
It depends on the single parameter 0 < 6 < 1 and requires By, B; to be both
complex Banach spaces. Complex interpolation is a sort of ‘abstract’ gener-
alization of the classical Riesz-Thorin theorem, asserting that if an operator
T has norm 1 simultaneously on both spaces By = L,, and B = L, with
1 < po < p1 < oo, then it also has norm 1 on the space L, for any p such
that pg < p < p;. Since we make heavy use of this complex method in non-
commutative L,-theory, we review its basic properties somewhat extensively.

The real interpolation space is denoted by (By, B )g 4. It depends on two
parameters 0 < < 1, 1 < g < o0, and now (Bp, B) can be a pair of real
Banach spaces. Real interpolation is a sort of abstract generalization of the



