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PREFACE

Algebraic KX-theory is the name given to a body of theory which
may be regarded in the first instance as an attempt to general=-
ize parts of linear algebra, notably the theory of dimension of
vector spaces, and determinants, to modules over arbitrary
rings. The subject gets its name from its notation - given a
ring R, one constructs groups called KjR, KiRy KoRy ses = and is
called algebraic K-theory, rather than just K-theory, because it
derives from (topological) k-theory, which is to do with the
topology of vector bundles.

The intention of this text is to make algebfaic K-theory acc-
essible at a more elementary level than heretofore. The only
absolute prerequisites are standard undergraduate first courses
in linear algebra and in groups and rings, although an acquaint-
ance with the beginnings of the theory of group presentationms,
modules, and categories, woulﬁ be helpful. 'From time to time,
some algebraic topology is used, but these sections can easily
be omitted at a first reading.

I have tried tb make the text as self-contained as possible,
so I have included proofs of many standard results on such top-

ics as, for example, tensor products and modules of fractions.
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I have also reduced to a minimum the number of proofs left to
the reader; at the risk'of tedium, most proofs are given in full
detail., The more sophisticated reader is encouraged to skip the
proofs (or, better, provide his own) whenever the propositions
seem obvious,

The text is an expanded version of a London M.Sc. lecture
course given at King's College in 1976. The approach inevitably
owes much to the standard texts by ﬁass, Milnor, and Swan (list-
ed in the Bibliography)i. The choice of material is somewhat
arbitrary, being limited by space and by the requirement that it
be elementary, and so I ha;e been content to establish the most
basic properties of the functors Xj, X;, Kz, and to do a few ex-
plicit computations. Many important topics, such as the K-
theory of polynomial extensions, and localization exact sequen-
ces, are omitted; Quillen's higher K-theory is also beyond our
scope.

. My thanks are due to many people for their interest and en-
couragement, and I wish to thank especially Keith Dennis and
Michael Stein for conversations and correspondence which have
strongly influenced later sections of the text. I wish also to
thank the students and colleagues who attended the original
course of lectures, especially Philip Higgins and Tony Barnard,
whose penetrating questions and insistente on clarity were a
constant stimulus.

London J«.R.S.
March, 1981
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CHAPTER ONE

Modules

The word ring will mean an associati.ve, but not necessarily
commutative, ring with a multiplicative identity, written 1.
Let R, S be rings. A map f : R+ S is a (ring) homomorphism if,
for all r, s € R, we have f(r + s) = f(r) + £(s) and f(zrs) =
f(r)f(s), and also £f(1) = 1. Note that in this last equation
the symbol 1 has two meanings: on the left, 1 ¢ R, and on the
right, 1 ¢ S. '

Let R be a ring. A (left) R-module is an abelian group M,
written additively, with a map R X M + M, called scalar multi=-
plication and written (r, m) = rm (r ¢ R, m ¢ M), such that,

for all r, s ¢ R and my, n € M, we have

r(m +n) = m + zn (i)
(r + s)m = m + sm (ii)
(rs)m = r(sm) . b (iii)

im = m. (i)

Elements of R are then referred to as 'scalats. A right R-module
is defined similarly, except that (iii) is replaced by

(rs)m = s(xm). i)
Alternatively, and more naturally, the scalars may be written on
the right, so that (iii') reads m(sr) = (ms)r. The word module

will usually mean a left module. Of course, if the ring R is
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commutative, the notions of left and right R-module coincide; if
R is a field, an R-module is just a vector space over R. If

R = 7, the ring of rational integers, an R-module is just an
(additive) abelian group.

Let M be an R-module. Remember M is a group: a subgroup N
of M is called a submodule if it is closed under scalar multi-
plication, that is, if rn ¢ N for all r ¢ R and n € N. More
generally, if ¥ is any non-empty subset of M, write RN for the
set of all finite sums Zi r.n, (rl. €R, n; € N). RN is clearly
a submodule of M, and is the smallest submodule of M containing
N. Thus N is a submodule if and only if RN = N. Obviously ¥
itself is a submodule, and so is {0}, where O denotes the add-
itive identity of M. This follows from the fact that rO = O,
all r € R, which is easily deduced from the module axioms.

Let N be a ‘submodule of M. The quotient group M/N becomes
an R-module if we define the scalar multiplication by

r(m + N) =rm + N (r €¢ R, m € M).
It is easy to see that this is well-defined and satisfies the
axioms. M/N is then called the guotient module of M by N.
Let M, N be R-modules. A map f : M > N is called a (module)
homomorphism if, for all m, n ¢ M and r € R, we have
f(m + n) = £f(m) + £(n)
and ‘
£(zm) = r{£(m)].
The kernel
ker f = f-l{O} = {me M : £(m) = O}
is a submodule of M, and the image
£f(M) = {f(m) : m ¢ M}
;;_‘a submodule of N. The homomorphism f is a monomorphism if
‘u: is an injection, or equivalently if ker f = O; here we are
. writing 0 for the zero (sub)module: O = {0}. The homomorphism
© £ is an epimorphism if it is a surjection, that is, if f(ua) = N.

We sometimes write £ : ¥ '+ N for a monomorphism and £ : M > N
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for an epimorphism. If f is both a monomorphism and an epi-
morphism, it is an isomorphism; if such an f exists we say M, N

are isomorphic, and write M = N. In this case, f-l

: N> Mis
also an isomorphism. An endomorphism is a homomorphism M -+ M,
and an automorphism is an isomorphism M - M. The identity map
M > H is an automorphism. The first isomorphism theorem states
that if £ : M > N is a homomorphism then M/ker £ = £(M). The

proof is left to the reader.

1.1 Direct sums

Let M be an R-module, with submodules M;, Mp;. If every element

of M can be written uniquely in the form m; + mp; (m e My,

my € Mp) we say M is the direct sum of M; and Mp, and write M =

M} ® Mp. If, for arbitrary submodules M;, M; of M we write '

M + My ={m; +mp s m € M, my € Mp}

then it is clear that M; + My and M; n M, are submodules of M,

and that ¥ = M} ® My if and only if M = M; + My and M) n My = O.
More gengrally, if M is an R-module with submodules "A

(A € A), where the index set A may be infinite, and if every

element m € M can be written uniquely, except for zeros and the

order of the terms, as a finite sum m = 2)\ N (mA € "A)' then we

say M is the direct sum of the M., and write M =

A? agh 25
Now suppose we are given R-modules HA (X € A). We shall con-

truct their direct sum: Let M be the subset of the cartesian
product ,x, M, consisting of all A-tuples (m, ) with m, = O for
almost- all A (that is, for all but a finite number of values of
A). M becomes an R-module if we define addition and scalar
multiplication componentwise; explicitly,

(m)) + (n,) = (m, + n,) and r(my) = (zm,)
where my, n, € M and r € R. For each A ¢ A, M contains a sub=-
module

H; - {(mu) im = 0. for.all -1}

which is isomorphic to M, - If we identify M, with Mi in the

-
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obvious way, then M = Agl\ M, .
= : U -
Let M )‘21\ Ml and let il 2 H)\ M be the natural mono
morphism which embeds M, as a submodule of M. Let Tyt MM

be the epimorphism given by 'rrk(z]‘| mp) =m, where m, € Mu. all
u € A. We have

ﬂ.ilﬂl:M > M

A A
M (=

A

and “uih =0 : "A

where we are writing 1 for the identity isomorphism and O for
* the zero homomorphism (that is, the homomorphism whose image is
the zero submodule). It is hoped that it will always be clear
from the context when the symbols O and 1 are being used to de-
note maps and when they are being used to denote elements of a
ring or module. Note that, since we are writing maps on the
left of the elements on‘which they act, the map wx.i)‘ means the
composite map obtained by applying first i;\ and then Ty« Now
- let 1
S ey, )

Clearly N generates M,

Com)ersely, ,given R-modules M, My (A € A) and homomorphisms
i, *+ M, > M, n, : M> M such that v, i. = 1 for each ) and

A A A A A A

nuix =0 for A # u, and such that

M

2en ‘1).(”)‘). generates M, then
* 4@, M,. For we can construct a map Ve by (ml) =
DN il(m)‘), and this is clearly an isomorphism.

Given an R-module N and homomorphisms f)‘ : M, + N, there is a

A
unique homomorphism £ : 28y My 2N such that £i, = £, for all A:
" it is given by f[(mk)] = 2A fx(m)‘). The last expression makes
sense since m, = 0 for almost all A.

Note. that R itself is a left R-module in a natural way; the
submodules of R are precisely the left ideals of R. Given an
R-module M and m ¢ M there is a unique homomorphism £ : R + ¥

with £(1) = m: it is given by f£(r) = rm, all r ¢ R.
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1.2 Free modules

The R-module M is free if there is a subfamily {m of M

X}XEA
such that every element m € M can be written uniquely, except

for zeros and the order of the terms, as a finite sum m =

)y € R, all A. The set {mk}XeA is called a

basis, or R-basis, of M. Given such M, it is clear that if M, =

A
R{mx} then My

AgA MA' Conversely, if M =

21 z\m, where r

is a submodule of M, HX

xgh "1’ where MA = R for all A, then
M is free. The proof consists of choosing 2 suitable basis, and

= R, all A, and M =

the details are left to the reader.

If M is free with basis {mX} and N is an R-module, then

any map £ : {"x}xd& + N extends)‘te:ﬁ a unique homomorphism £ :
M + N. For f extends to MJ\ = R{ml} by f(m)‘) = rf(ma), all
r € R, and the result follows since M = )‘gh MA'

Suppose M, Ny, N, are R-modules, where M is free, and that
g : M+ Ny is a homomorphism and h : N; +> N is an epimorphism.
We show how to construct a homomorphism f : ¥ - N} with hf = g,

that is, so that the diagram

M
& lg
Ny —/* Ng

commutes. (Such f will not in general be unique.) For, if
{m
h is surjective we can choose n, € N with b(n)‘) = g(m)\)’ each
y» all A,
and then extend to the whole of M as above; the fact that hf = g
fol:lovs from the fact that hf(mx) = g(n)\), all X € A.

A}AGA is a basis of M, then g(mA) € Ny, each A € A, and since

X e A. Since M is free, we can define £ by f(mx) =n

1.3 Projective modules

We see now that the above property of free modules is shared by
a larger class of modules, called projective modules. The R-

module P is projective if it satisfies the following equivalent
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conditions:
(i) There exists a module Q such that P ® Q is free

(ii) Given modules Nj, N, and homomorphisms g : P + Ny and
h 3 Ny »* N3, there is a homomorphism £ : P + N; with hf = ¢

(iii) Given a module N and an epimorphism w : N -+ P, then 7
splits, that is, there is a monomorphism i : P \» N with ni =
1:P+P, = :
To show the equivalence of vthese conditions, we prove (i) =>
(i) => (1) => (). :
(i) => (ii). By the previous argument, there is a homomorphism
fi : P® Q>N with hfy = gy where LA P®Q~+ P is the nat~-
ural epimorphism. Put £ = flip. where iP : P+ P @®Q is the
natural monomorphism. Then hf = h(f1ip) = (hfl)ip = (gmp)i, =
g(vrpip) =gl, =g, as required. The appropriate diagram is:

(ii) => (iii). The proof is immediate:

= P
i’/' 1
ks
L
(The dotted arrow indicates the map whose existence is assert-
ed.)
(iii) => (i). From (iii), if
N > P, we obtain P L, N
with ni = 1P’ and it follows that
N =ker m ® i(P) ‘= ker 7 ® P,
For we have the inclusion ker 7 L N, and the map N -+ ker = is

given by m | m - iw(m), all m € N, Now, given P, choose a gen-
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erating set {-l}lel\’ and let N be free with basis Then

: {nA}AeA'
w is defined by extending the ‘map n, e m, (A € A, and the
result follows. .

Note: if P, P| are projective, so is P @ Py,

A module ¥ is finitely generated if there is a finite subset N
of Mwith RV = . If we write " = R@ R ® ... ® R (n terms),
then R" is finitely geﬁeut.d (it is free with a finite basis),
and & is finitely generated if and only if there is a natural
number n and an epimorphism R™'++ M.

Note: if M, M; are finitely generated, so is M @ M;. Further,
the module P is finitely generated and projective if and only if
there is a module Q and a natural number n such that P & Q = 7.
Of course Q is then finitely generated and projective also. In
particular, R” is finitely generated and projective.



