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Foreword

The present volume is a text designed for a first course in analysis.
Although it is logically self-contained, it presupposes the mathematical
maturity acquired by students who will ordinarily have had two years of
calculus When used in this context, most of the first part can be omitted,
or reviewed extremely rapidiy, or left to the students to read by themselves.
The course can proceed immediately into Part Two after covering Chapters
0 and 1. However, the techniques of Part One are precisely those which
are not emphasized in elementary calculus courses, since they are regarded
as too sophisticated. The context of a third-year course is the first time
that they are given proper emphasis, and thus it is important that Part One
be thoroughly mastered. Emphasis has shifted from computational aspects

" of caleulus to theoretical aspects: proofs for theorems concerning continuous
functions; sketching curves like x%e™*, xlog x, x'* which are usually
regarded as too difficult for the more elementary courses; and other similar
matters. :

Roughly speaking, the course centers around those properties which
have to do with uniform convergence, uniform limits, and uniformity in
general, whether in the context of differentiation or integration. It is
natural to introduce the sup norm and convergence with respect to the
sup norm as one of the most basic notions. ‘One of the fundamental pur-
poses of the course is to teach the reader fundamental estimating tech-
niques involving the triangle inequality. especially as it applies to limits of
sequences of functions. On the one hand, this requires a basic discussion
of open and closed sets in metric spaces (and 1 place special emphasis on
normed vector spaces, without any loss of generality), compact sets, con-
tinuous functions on compact sets, etc.” On the other hand, it is also neces-
sary to include the classical techniques of determining convergence for
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series, Fourier series in particular. A number of convergence theorems
are subsumed under the general technique of Dirac sequences, applying
as well to the Landau proof of the Weierstrass approximation theorem

-as to the proof of uniform convergence of the Cesaro sum of a Fourier

series to a continuous function; or to the construction by means of the

" Poisson kernel of a harmonic function on the disc having given boundary
“value on the circle. Thus concrete classical examples are emphasized.

" The theory of functions or mappings on R" is split into two parts. One
chapter deals with those properties of functions (real valued) which can
¢ssentially be reduced to one variable techniques by inducing the function
on a curve. This includes the derivation of the tangent plane of a surface,
the study of the gradient, potential functions, curve integrals, and Taylor’s
formula in several variables. These topics require only a minimum of linear
algebra, specifically only n-tuples in R” and the basic facts about the scalar
product. The next chapters deal with maps of R” into R™ and thus require
somewhat more linear algebra, but only the basic facts about matrices and
determinants. Although I recall briefly some of these facts, it is now reason-
ably standard that third-year students have had a term of linear algebra
and are at ease with matrices. Systematic expositions are easily found
elsewhere, for instance in my Introduction to Linear Algebra.

Only the formal aspect of Stokes’ theorem is treated, on simplices. The
computational aspects in dimension 2 or 3 should have been covered in
another course, for instance as in my book Calculus of Several Variables;

while the more theoretical aSﬁects on manifolds deserve a monograph to
themselves and inclusion in this book would have unbalanced the book,

which already includes more material than can be covered in one year.
The emphasis here is on analysis (rather than geometry) and the basic
estimates of analysis. The inclusion of extra material provides alternatives
depending on the degree of maturity of the students and the taste of the
instructor. For instance, I preferred to provide a complete and thorough

-

treatment of the existence and uniqueness theorem for differential equa-

tions, and the dependence on initial conditions, rather than slant the book
toward more geometric topics.

The book has been so written that it can also be used as a text for an
honors course addressed to first- and second-year students in universities
who had calculus in high school, and it can then be used for both years.
The first part (calculus at a more theoretical level) should be treated

thoroughly in this case. In addition, the course can reasonably include .

Chapters 6, 7, the first three sections of Chapter 8, the treatment of the
mtegral given in Chapter 10, and Chapter 15 on partical derivatives. In
addmon, some linear algebra should be included.

Traditional courses in “advanced calculus” were tco computational,
and the curriculum did not separate the “calculus” part from the “analysis”
part, as it does mostly today. I hope that this Undergraduate Analysis will
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meet the need of those who want to learn the basic techniques of analysis
for the first time. My Real Analysis may then be used as a continuation at
a more advanced level, into Lebesgue.integration and functional analysis,
requiring precisely the background of this undergraduate course.

-~ New Haven SERGE LANG
Spring 1983
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PART ONE
REVIEW OF CALCULUS






CHAPTER 0
Sets and Mappings

In this chapter, we have put together a number of definitions concerning
the basic terminology of mathematics. The reader could reasonably start
reading Chapter 1 immediately, and refer to the present chapter only
when he comes across a word which he does not understand. Most con-
cepts will in fact be familiar to most readers. »

We shall use some examples which logically belong with later topics in
the book, but which most readers will have already encountered. Such
examples are needed to make the text intelligible.

§1. Sets

A collection of objects is called a set. A member of this collection is also
called an element of the set. If a is an element of a set S, we also say that a
lies in S, and write g€ S. To denote the fact that S consists of elements
a,b,... we often use the notation S = {a,b,...}. We assume that the
reader is acquainted with the set of positive integers, denoted by Z*, and
consisting of the numbers 1, 2,.... The set consisting of all positive in-
tegers and the number 0 is called the set of natural numbers. It is denoted
by N. 3

A set is often determined by describing the properties which an object
must satisfy in order to be in the set. For instance, we may define a set S
by saying that it is the set of all real numbers =1. Sometimes. when
defining a set by certain conditions on its elements, it may happen: that
there is no element satisfying these conditions. Then -we say that the set is
empty. Example: The set of all real numbers x which are both >1 and <0
is empty because there is no such number.
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If S and §’ are sets, and if every element of §’ is an element of S, then
we say that S is a subset of S. Thus the set of all even positive integers
{2,4,96, ...} is a subset of the set of positive integers. To say that S’ is a
subset of S is to say that S’ is part of S, Observe that our definition of a
subset does not exclude the possibility that ' = S. If §’ is a subset of S,
but S’ # §, then we shall say that S’ is a proper subset of S. Thus the set
of even integers is a proper subset of the set of natural numbers. To de-
note the fact that S’ is a subset of S, we write $' = S, or § o §’; we also
say that S’ is contained in S. If S' < Sand S < §'then § = §'.

If §,, S, are sets}“then the intersection of S, and §,, denoted by
S, N §,, is the set of elements which lie in both §; and S,. For instance,
if S, is the set of natural numbers 2 3, and S, is the set of natural numbers
< 3,then S, n S, = {3} is the set consisting of the number 3 alone.

The union of S, and S,, denoted by S, U S,, is the set of elements which
lie in §; or S,. For example, if S; is the set of all odd numbers
{1,3,5,7,...} and S, consists of all even numbers {2,4,6,...}, then
S; U S, is the set of positive integers.

If §’ is a subset of a set §, then by the complement of S’ in S we shall
mean the set of all elements x € S such that x does not lie in S’ (written
x¢S’). In the example of the preceding paragraph, the complement of
S, in Z* is the set §,, and conversely.

Finally, if S, T are sets, we denote by S x T the set of all pairs (x, y)
with xe S and ye T. Note that if S or T is empty, then § x T is also
empty. Similarly, if S, ...,S, are sets, we denote by §; x --- x §,, or

ITs:
i=1

the set of all n-tuples (x,, ... ,x,) with x; € §;.

§2. Mappings

Let S, T be sets. A mapping. or map, from S to T is an association which
to every element of S associates an element of T. Instead of saying that
f is a mapping of S into T, we shall often write the symbols f: S - T.

If f:§ — T is a mapping, and x is an element of S, then we denote by
f(x) the element of T associated to x by f. We call f(x) the value of f at x,
or also the image of x under f. The set of all elements f(x), for all x € S, is
called the image of f. If §' is a subset of S, then the set of elements f(x)
for all x € §', is called the image of §’ and is denoted by f(§"). !

. If f is as above, we often write x+» f(x) to denote the association of
f(x) to x. We thus dfstinguish two types of arrows, namely — and .



