Of twal_’
E?w gineeri rlw_ g
with UM

Software Engineering

muuwwmmmmmmmmmam
communications. UML-based models facilitate and enhance communication between business
analysts, users, designers, architects, and testers of the system under development. The textbook
covers the 14 different modeling constructs in UML 2.5.

Because the object-oriented approach to developing software introduces fundamentals for high
quality software development, the topic is interwoven throughout this book in discussing the
fundamentals of software engineering, applying those fundamentals in modeling, and developing
software solutions. The UML is presented as three interrelated models: Model of the Problem Space
(MOPS), Model of the Solution Space (MOSS), and Model of the Architectural Space (MOAS).

The textbook also provides helpful hints on how a software engineer can work in an Agile development
environment and understand the wider project management aspect of producing software solutions.

This textbook helps software engineers appreciate the importance and the relevance of software
modeling in creating high-quality software programs. Budding software engineers need to learn
right from the outset that developing good solutions is a lot more than “coding.” This book covers
additional topics, such as user interface design, nonfunctional requirements (NFRs), quality
assurance, and testing, to ensure appropriate breadth and sufficient depth that is apt for teaching-
learning software engineering.

This book is based on the author’s teaching, research, and practical experience in software
engineering. Students and practitioners alike will find themselves building on the knowledge gained
here and applying it to the intricacies of software engineering.
For instructors, Web support for this book includes:

* All presentation material including all figures and slides for each chapter

* Suggestions on tutorial sessions and roughly worked examples for the team project

* Administrative and lab requirements for the project work including suggested CASE tools

* Suggestions on assessments and marks and time distribution

Software Engineering with UML is designed to be of value to both undergraduate and postgraduate
courses in software modeling through appropriate selection of chapters and corresponding
emphasis on exercises and case studies. The value for practitioners lies in the example-based
explanations and practical hints and tips through the discussions.

. , K35643
CRC Press | suie aton, FL 3348 ISBN: 978- 1. 135 -29743-2
Taylor & Francis Group Nev - M ” qUDDU
n informa busine A il Park || nl I“]
81138"29743
WWwWw.crcpress.com

=

oftware Engineering with UML .

Software Engineering
with UML

Bhuvan Unhelkar

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN AUERBACH BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, F1. 33487-2742

© 2018 by Taylor & Francis Group, LI.C
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-1-138-29743-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the
validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the
copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to
publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let
us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission
from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for

identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Software Engineering
with UML

Janalee and Allen Heinemann

Who succinctly abstracts humanity in all its joys and grace:

Worth Modeling!

Foreword

A few months ago, I was talking with one of my colleagues, and our conversation meandered into
modeling skills, or rather the lack thereof, in the new generation of software engineers. More specifi-
cally, my colleague lamented the lack of knowledge about the Unified Modeling Language (UML)
and object-oriented (OO) design skills among developers these days. Time and again we had both
run into very smart developers whose effectiveness was nowhere near what it should be mainly owing
to their lack of modeling skills and experience. Worse yet, many of them were proud of it! Yikes!

To be fair, though, one of the problems seems to be the lack of emphasis on good modeling and
design in software engineering curricula. Adding to this problem is the fact that so few good books
have been written on UML in the past five years. The need for books and other teaching materials
that explain software engineering with UML and show its application in practice cannot be over-
emphasized. This modeling material also needs to keep up with the changes in software engineer-
ing such as the development of services, analytics, and mobile apps. Yet, even online forums, sites,
and blogs that discuss software modeling do so sparingly. Budding programmers rarely get to see
good examples of models and are not able to develop their skills and techniques in applying these
models in enhancing the quality and productivity of their work.

And there is a dire need for both quality and productivity to improve in practice. From con-
trollers in street lights to aviation systems and battlefield targeting, software systems permeate
every aspect of our society. These software systems need proper definitions, architectures, designs,
testing, and sensible deployment. A commonly-understood, standardized modeling language is
imperative. The UML defines the standard modeling artifacts when it comes to OO technology.*
The use of UML has significantly enhanced the quality and acceptability of software applications
by enabling formal requirements modeling, undertaking quality designs, and providing sound
basis for iterative development of solutions.

In this book, Dr. Unhelkar applies UML to these critical societal functions. While the pri-
mary focus of this book is to teach UML standards, techniques, diagrams, and models, they are all
couched within the fundamentals of OO software.engineering. These OO fundamentals—clas-
sification, abstraction, inheritance, association, encapsulation, and polymorphism—set the tone
for the use of UML in subsequent chapters. The contents within each chapter reflect the experi-
ences of Dr. Unhelkar in teaching and practicing software engineering with the UML. The book
is replete with short, simple examples that explain the fundamentals of OO software engineering;
then there the book explains the use of each of the UML diagrams and their relevance in practice.
It also has one of the key things that I always look for in a book—a running example of practical
case study that helps make the material relevant to both students and practitioners of software

* The Object Primer 3rd Edition: Agile Modeling Driven Development with UML 2.—See more at hetp://www.
agilemodeling.com/essays/uml|Diagrams.htm

xxii B Foreword

engincering. The presentation of common errors in modeling, discussion questions, team-based
project work, and quizzes makes this book invaluable to readers. I think this book goes a long way
toward helping rectify the situation around the lack of modeling in teaching and practice.

Now, you may wonder why am I writing the foreword for this book. I've been associated with
UML since its inception in the mid-1990s; I wrote the first publicly published article about UML
for Object Magazine in 1996, and my second book, Building Object Applications That Work, pub-
lished in 1997, was the first book to cover UML. In 2002, my book Agile Modeling teatured UML
extensively, showing how to take a lightweight approach to modeling and documentation. In
2005, the Object Primer 3" Edition went into even more detail about how UML and modeling in
general are key aspects of enterprise-class Agile software development. So I have a fairly deep back-
ground in UML and OO software design and have written about it extensively. During my visits
to Australia, I was also invited by Dr. Unhelkar to present at the Special Interest Group of the
Australian Computer Society. In the mid-2000s, my focus shifted from UML and objects to soft-
ware process in general, culminating in my continuous work with Mark Lines on the Disciplined
Agile (DA) framework. Despite this change in focus, I remain extremely interested in developing
good software models using UML standards.

I recommend this book to anyone who is serious about software engineering. The fundamen-
tal skills and knowledge about software engineering and UML outlined here will be of immense
value to both students and practitioners. 1 take this opportunity to compliment Dr. Unhelkar
on authoring this much needed yet simple and practical book on a vital topic within software

engineering.

Scott Ambler
Toronto, Canada

Scott Ambler is a Senior Consulting Partner with Scott Ambler
+ Associates, working with organizations around the world to
help them improve their software processes. Ambler is globally
known for training, coaching, and mentoring in disciplined
Agile and lean strategies at both the project and organizational
level. Ambler is (co-)author of several books and white papers
on object-oriented software development, software process,
disciplined Agile delivery (DAD), Agile model-driven develop-
ment (AMDD), Agile database techniques, and the Enterprise
Unified Process (EUP)™. He is also a regular invitee for key-
note addresses in conferences worldwide. He is a Fellow of

the International Association of Software Architects and the
Disciplined Agile Consortium. He was a Senior Contributing Editor with Dr. Dobb’s Journal and
occasionally writes for Cutter Consortium and IBM Developerworks. Please visit Scott Ambler.com
for further details.

Preface

Modeling saves time and energy.*

Welcome to Software Engineering with UML. This book acknowledges and uses the Object
Management Group’s Unified Modeling Language (UML 2.5) standard to engineer high-quality
software solutions. In an age of ever-increasing demand on software developers, clarity of commu-
nication and conveyance of understanding are prerequisites for success. Rapidly changing tech-
nologies for development, crunching time to produce working solutions, unpredictable business
and legal environments, exploding data, cross-platform testing, globally dispersed development
teams, and incessant requirements dictated by highly knowledgeable users place a premium on the
technical and professional skills of a software engineer.

The premises of this book are that communication is the key to good software engineering and
that modeling forms the basis of such communication. UML-based models facilitate and enhance
communication between business analysts, users, designers, architects, and testers of the system
under development. UML version 2.5 covers 14 different modeling constructs (package, use case,
activity, interaction overview, class, sequence, communication, object, state machine, component,
deployment, composite structure, timing, and profile diagrams). UML diagrams are based on a
robust meta-model, which also enables extensibility mechanisms (stereotypes, tags, and notes).

An object-oriented approach to developing software introduces fundamentals for high-quality
software development. Therefore, the topic of object orientation is interwoven throughout this
book—in discussing the fundamentals of software engineering and applying those fundamentals
in modeling, and developing software solutions.

UML grew out of a need to standardize a varying sets of notations and design approaches.
Today it has evolved and stabilized for use across multiple software engineering functions such
as capturing and modeling requirements of the problem to be solved, designing and prototyp-
ing the software solution, and understanding the constraints and impact of the solution on the
existing enterprise-level architecture. UML is presented in this book as three interrelated models:
model of the problem space (MOPS), model of the solution space (MOSS), and model of the
architectural space (MOAS). These models are not watertight compartments but, rather, a way
of delineating the tools (diagrams) provided by the UML based on a role and its purpose within
a software project. As an ISO standard, UML certainly forms an integral part of a software
engineer’s toolkit.

Methods (processes) for developing software solutions form an important and integral part of
software engineering. This material touches key areas of software development methods. Helpful

* From a Tony Robbins seminar.

xxiii

xxiv B Preface

hints are provided on how a software engineer can work in an Agile development environment and
also understand the wider project management aspect of producing software solutions.

In the era of mobile apps, Cloud-based services, the Internet of Things (IoT'), and Big Data
analytics, a skeptic might be prone to discount the value of modeling (and in particular UML).
Successful software development shows thart disciplined modeling remains integral to communi-
cations across multiple stakeholders involved in developing solutions. The aim in this book is to
make software engineers appreciate the importance and the relevance of software modeling in
creating high-quality software programs.

Budding software engineers need to learn from the outset that developing good solutions
involves a lot more than “coding.” While programming is a necessity in the field of software, it
is not sufficient. For example, user interface design, nonfunctional requirements (NFRs), quality
assurance, and testing are crucial topics in software engineering that are more or less beyond the
UML. This book covers these additional topics to ensure the appropriate breadth and sufficient
depth that are necessary for teaching and learning software engineering.

This book is based on the author’s teaching, researching, and experiencing the nitty-gritty and
nuances in the field of software engineering. Students and practitioners alike will find themselves
building on the knowledge gained here and applying it to the intricacies of software engineering.
The book is designed to be of value to both undergraduate and postgraduate courses in software
modeling through appropriate selection of chapters and corresponding emphasis on exercises and
case studies. The value for practitioners is embedded in the example-based explanations and prac-
tical hints and tips through the discussions.

Audience
The primary audiences of this book are:

B Students (undergrad): These are the basic- to intermediate-level readers learning software
engineering at an undergraduate level. These readers are keen to understand the basics of
software engineering followed by a standard way to model requirements and create design
solutions using UML.

B Students (postgrad): These are readers looking for greater details on building an overall holis-
tic software solution. These readers go deeper into the architectural and design aspects of
solutions, and they are also keen to understand the process and management aspects of
software projects. The impact of advanced concepts (e.g., reuse, granularity, patterns) on
software solutions is also of interest to these readers.

B Business analysts/requirements modelers: These readers are learning to capture and model
requirements using UML standards (notably use cases, activity diagrams, and business-level
basic class diagrams). These people work primarily to develop the model of the problem
space (MOPS).

B Quality professionals: These are the quality analysts and testers aiming to improve their work
in enhancing the quality of a solution by inspecting the models, undertaking walk-throughs,
and verifying and validating the models. These readers also need the UML to understand
and communicate with the users, designers, and architects of the software solutions.

B Teachers: These include professors who are keen to pitch the right material at the right level.
Teachers will find this book an excellent text for a typical one-semester subject (unit) totally
supported by presentation material and case studies (available on the publisher’s website).

Preface ®m xxv

B Trainers: Trainers conducting a 2- to 3-day industrial course in software modeling or busi-
ness analysis will find that this book supports their training efforts. The book’s value to
trainers lies in the succinct organization of chapters with the opportunity to choose the
chapters depending on the audience and time provided to conduct trainings. The team proj-
ect case study enables experiential learning in industrial training courses.

W Consultantslpractitioners: These are readers who will find the practical content and a running
case study through the chapters to be of immense value.

Assumed Knowledge

This book assumes a general (introductory) understanding of software development (for example,
what is a software system and what is meant by analysis and design?). Students can develop this
understanding through any programming- or database-related course or by reading and absorb-
ing the basics of analysis and designs. Practitioners easily gain this understanding through their
experience. Such an introductory understanding of software development makes it easier and
quicker to grasp the concepts of software engineering, object orientation, and UML-based model-
ing discussed in this book.

Contents

This book is divided into 21 chapters, each reflecting a topic of discussion relevant to a 90-minute
industrial training session or a 2-hour lecture. Assuming an introduction, a concluding lecture, and a
midterm test, this book covers a teaching period of approximately 14 weeks for an undergrad course in
software modeling (or program design). An alternative selection of chapters and greater emphasis on the
team project case study result in material for a graduate course in software engineering.

At the end of each chapter, readers will find discussion questions (which can be treated like
exercises). It is highly recommended that these discussion questions are completed immediately
after the lecture or reading of the chapter. The discussion questions are designed to help students
consolidate the concepts discussed in the chapter. Each chapter also has the steps outlined for
a case study. The case study must be performed on a team to enable students to appreciate the
challenges and advantages in using UML in real-life software projects. Three to four students are
expected to participate in this team project. The team project work is performed during the tutori-
als in labs outside the lecture times. The team project requires the use of a UML-based CASE tool
(for example, StarUML or Visio™).

Pedagogy

This book is written for the purpose of teaching and learning UML within the context of object
orientation. This book is relevant for both undergraduate and graduate students. The examples
in the book are derived from the author’s practical industrial experience, yet the teaching experi-
ence ensures the book will fall short with respect to academic rigor and authenticity. The book
is a combination of the author’s experience in various practical consulting roles—including busi-
ness analysis, project management, system design, quality assurance, and testing—combined with
years of teaching and coordinating UML courses at both undergraduate and graduate levels across
universities in Australia, the USA, China, and India.

xxvi B Preface

Web Support

Suggested structure and formats for presentations of this material, typical assessments with tim-
ings and marks, as well as administrative requirements for this subject are available on the CRC
Press/ Taylor & Francis Group website (https://www.crcpress.com/9781138297432). Web support
for this book includes:

All presentation materials including all figures and slides for each chapter

Suggestions on tutorial sessions and roughly worked examples for the team project
Administrative and lab requirements for the project work including suggested CASE tools
Suggestions on assessments and marks and time distribution

Appendix A: Case Study Problem Statements for Team Projects with additional case studies
not included in this book.

Appendix B: Mid-Term

B Appendix C: Final Exam

Critiques

Readers are invited to submit criticism of this work. It would be an honor to receive genuine criti-
cism and comments on this material that, [am sure, will not only enrich my own knowledge and
understanding of the topics discussed in this book but also add to the general wealth of model-
ing knowledge available to the ICT community. Therefore, I extend a thank you in advance to all
potential critics of this work.

Bhuvan Unhelkar

www.unhelkar.com

Glossary of Acronyms

CMM

CMMi

CMS

CRM

ERP

GUI
HMS

ICT

Business Analyst (not to be confused with business architect)

Big Data Framework for Agile Business

Business Domain Model—represented by class diagram at a high level (i.c., not
containing technical details)

Business Objective (basis for software projects)

Business Process Model—representing workflow or business processes

Business Process Model and Notation

Composite Agile Method and Strategy

Computer-Based Training (for users before deploying a system; automated in
many cases)

Cloud Computing (anything on the Cloud—includes computing, storage,
analytics, platform, and infrastructure)

Capability Maturity Model—provides basis for measuring and comparing
process maturities of various organizations and projects; initiative of Software
Engineering Institute at Carnegie Mellon University

Capability Maturity Model integration

Content Management System—dealing primarily with the contents of a website
and its management

Customer Relationship Management—a comprehensive system including interfaces,
processes, and databases to handle all aspects of customer-related processes (from
identifying, marketing, and selling through to support and retirement)

Common Warehouse Metamodel

Disciplined Agile Development

Domain Expert—in a particular domain or industry like banking, airlines, or
hospitals

Data Modelers—focusing on creating models to represent databases in backend
Enterprise Architecture—brings together various (primarily technical) aspects of
an enterprise/organization

Enterprise Resource Planning—typically representing large and complex software
systems that include all functions of an organization (e.g., SAP, PeopleSoft, Oracle)
Graphic User Interface—also known as screens or forms

Hospital Management System—a case study used in this text to demonstrate
practical application of software engineering with UML

Information and Communication Technology

Interface Designer—specialist in designing various types of interfaces including,
but not limited to, graphics.

XXVil

XXViii

IIoT
1ir

10D

IoE
IoT

ISAM

IT

MDA
Metamodel

MOAS
MOF
MOPS
MoSCoW
MOSS

NFR
NFRS
OMG

00

PloT
PM

QA

QM
RM
SA
SD
SDLC
SEP
SMD
SOAP
UDDI
UML
V&V
WS
XML

m Glossary of Acronyms

Industrial Internet of Things

Iterative, Incremental, Parallel—software development life cycle ideally suited for
OO development

Interaction Overview Diagram—part of UML providing high-level overview of
interaction diagrams

Internet of Everything—a more generic term to include IoT'

Internet of Things—represents daily use devices that are connected to the base
and with each other through the Internet

Indexed Sequential Access Method—a method to access data through indexes
Information Technology—increasingly being referred to as ICT

Model-Driven Architecture (OMG initiative)

Model of a Model that dictates the rules for the creation of modeling
mechanisms like the UML

Model Of Architecture Space—created primarily by the system architect in the
background space using UML notations and diagrams

Meta-Object Facility—owned by OMG and forms basis for the creation of new
methods

Model Of Problem Space—created primarily by business analyst in problem
space using UML notations and diagrams

Must—Should—Could-Won't (four categories/priorities in terms of requirements
of a software system)

Model Of Solution Space—created primarily by system designer in solution
space using UML notations and diagrams

NonFunctional Requirement—also known as operational requirement
NonFunctional Requirement Specifications—also nonfunctional requirements
Object Management Group—responsible for unification of modeling notations
resulting in UML

Object Oriented—earlier considered only as a programming technique, OO now
permeates all aspects of software engineering

Personal Internet of Things

Project Manager

Quality Assurance

Quality Control

Quality Management

Requirements Modeler

System Architect

System Designer

Software Development Life Cycle

Software Engineering Process (also software process)

State machine Diagram—also known as state chart or state diagram

Simple Object Access Protocol

Universal Description, Discovery, and Integration

Unified Modeling Language

Verification and Validation

Web Services

eXtensible Markup Language

