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INTRODUCTION

Most of this book is based on lectures to third-year undergraduate
and first-year postgraduate students. It aims to provide a thorough
grounding in the more elementary parts of algebraic topology, although
these are treated wherever possible in an up-to-date way. The reader
interested in pursuing the subject further will find sugge: ions for
further reading in the notes at the end of each chapter.

Chapter 1 is a survey of results in algebra and analytic topology that
will be assumed known in the rest of the book. The knowledgeable
reader is advised to read it, however, since in it a good deal of standard -
notation is set up. Chapter 2 deals with the topology of simplicial
complexes, and Chapter 3 with the fundamental group. The subject
of Chapters 4 and 5 is homology and cohomology theory (particularly
of simplicial complexes), with applications including the Lefschetz
Fixed-Point Theorem and the Poincaré and Alexander duality theo-
rems for triangulable manifolds. Chapters 6 and 7 are concerned with
homotopy theory, homotopy groups and CW-complexes, and finally
in Chapter 8 we shall consider the homology and cohomology of
CW-complexes, giving a proof of the Hurewicz theorem and a
treatment of products in cohomology.

A feature of this book is that we have included in Chapter 2 a
proof of Zeeman’s version of the relative Simplicial Approximation
Theorem. We believe that the small extra effort needed to prove the
relative rather than the absolute version of this theorem is more than
repaid by the easy deduction of the equivalence of singular and
simplicial homology theory for polyhedra.

Each chapter except the first contains a number of exercises, most
of which are concerned with further applications and extensions of the
theory. There are also notes at the end of each chapter, which are
partly historical and partly suggestions for further reading.

Each chapter is divided into numbered sections, and Definitions,
Propositions, Theorems, etc., are numbered consecutively within each
section: thus for example Definition 1.2.6 follows Theorem 1.2.5 in the
second section (Section 1.2) of Chapter 1. A reference to Exercise n
denotes Exercise 7 at the end of the chapter in which the reference is
made; if reference is made to an exercise in a different chapter, then
the number of that chapter will also be specified. The symbol [] denotes
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vi INTRODUCTION

the end (or absence) of a proof, and is also used to indicate the end of
an example in the text. References are listed and numbered at the
end of the book, and are referred to in the text by numbers in brackets:
thus for example [73] denotes the book Homotopy Theory by S.-T. Hu.

Finally, it is a pleasure to acknowledge the help I have received in
writing this book. My indebtedness to the books of Seifert and
Threlfall [124] and Hu [73], and papers by Puppe [119], G. W.
Whitehead [155], J. H. C. Whitehead [160] and Zeeman [169] will be
obvious to anyone who has read them, but I should also like to thank
D. Barden, R. Brown, W. B. R. Lickorish, N. Martin, R. Sibson,
A. G. Tristram and the referee for many valuable conversations and
suggestions.
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CHAPTER 1

ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES

1.1 Introduction

In this chapter we collect together some elementary results in set
theory, algebra and analytic topology that will be assumed known in the
rest of the book. Since the reader will probably be familiar with most
of these results, we shall usually omit proofs and give only definitions
and statements of theorems. Proofs of results in set thebry and analytic
topology will be found in Kelley [85], and in algebra in Jacobson [77];
or indeed in almost any other standard textbook. It will be implicitly
assumed that the reader is familiar with the concepts of sets (and
subsets), integers, and rational, real and complex numbers.

1.2 Set theory

The notation a € 4 means that a is an element of theset 4; 4 = B
that 4 is a subset of B. {a€ A4 |...} means the subset of 4 such that
... is true, and if 4, B are subsets of some set C, then 4 U B, AN B
denote the unmion and intersection of A and B respectively: thus
AUB ={ceC|ced or ceB} and ANB ={ceC|ceA and
c € B}, Unions and intersections of arbitrary collections of sets are
similarly defined.

Definition 1.2.1 Given sets 4 and B, the product set A x B is the
set of all ordered pairs (a, &), for all ae A, b e B. A relation between
the sets 4 and B is a subset R of 4 x B; we usually write aRb for the
statement ‘(a, b) € R’.

Definition 1.2.2 A partial ordering on a set A is a relation <
between -4 and itself such that, whenever @ < b and b < ¢, then
a < c. A total ordering on A is a partial ordering < such that

(a) ifa < band b < a, thena = b;

(b) given a, b€ 4, eithera < bor b < a,

Proposition 1.2.3  Given a finite set A containing n distinct elements,
there exist n! distinct total orderings on A. |

1



2 ALGEBRAIC AND TOPOLOGICAL PRELIMINARIES cHl

Definition 1.2.4 A relation R between a set 4 and itself is called
an equivalence relation on A if

(a) for all a € 4, aRa;
(b) if aRb, then bRa;
(c) if aRb and bRc, then aRe.

The equivalence class [a] of an element a € 4 is defined by [a] =
{be A | aRb}.

Theorem 1.2.5 If R is an equivalence relation on A, then each
element of A is in one and only one equivalence class. |}

Definition 1.2.6 Given sets 4 and B, a function f from Ato Bis a
relation between 4 and B such that, for each a € 4, there exists a
unique b € B such that afb. We write b = f(a), or f(a) = b, for the
statement ‘afb’, and f: 4 — B for ‘f is a function from 4 to B’.

Example 1.2.7 Given any set 4, the identity function. 1,:A— 4
is defined by 1,(a) = a for all 2 € 4 (we shall often abbreviate 1, to 1,
if no ambiguity arises). |

Definition 1.2.8 If f: 4 — B is a function and C is a subset of 4,
the restriction (f|C): C— B is defined by (f|C)(c) = f(c) for all
¢ € C. Given two functions f: A — B, g: B — C, the composite function
gf: A — C is defined by gf(a) = g(f(a)). The image f(4) of f: A — B
is the subset of B of elements of the form f(a), for some a € 4; fis onto
if f(4) = B; f is ome-to-one (written (1-1) if, whenever f(a;) = f(ay),
then a; = a,; f is a (1-1)-correspondence if it is both onto and (1-1).
Two sets 4 and B are said to be in (1-1)-correspondence if there exists a
(1-1)-correspondence f: 4 — B.

Proposition 1.2.9 Let f: A — B be a function.

(a) f: A — B is onto if and only if there exists a function g: B — A
such that fg = 1z.

(b) f: A— RBs (1-1) if and only if there exists a functiong: B — A
such that gf = 1, (provided A is non-empty).

(¢) f: A— B is a (1-1)-correspondence if and only if there exists a
function g: B— A such that fg = 1y and gf = 1,. In this case g is
unique and is called the ‘inverse function’ to f. |}

- Definition 1.2.10 A set 4 is countable (or enumerable) if it is in
(1-1)-correspondence with a subset of the set of positive integers.

Proposition 1.2.11 If the sets A and B are countable, sois A x B. §
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Definition 1.2.12 A permutation of a set A is a (1-1)-corre-
spondence from 4 to itself; a transposition is a permutation that leaves
fixed all but two elements of 4, which are interchanged. If A4 is a finite
set, a permutation is even if it is a composite of an even number of
transpositions and odd if it is a composite of an odd number of
transpositions.

1.3 Algebra

Definition 1.3.1 A group G is a set, together with a function
m: G x G — G, called a multiplication, satisfying the following rules.

(a) m(m(g,, £2), &s) = m(g1, m(ga, £1)) for all gy, g3, 85 € G.
(b) There exists an element e € G, called the unit element, such that

m(g, e) = g = m(e, g) for all g e G.

(¢) For each g € G, there exists g’ € G such that m(g,g') = e =
m(g', 8)-

The element m(g,, g,) is regarded as the ‘product’ of g, and g,,and is
normally written g,g,, so that rule (a), for example, becomes
(£182)gs = £1(g2£3) (this is usually expressed by saying that the product
is associative; we may unambiguously write g, g, g5 for either (g,25)g3
or g,(g283)). We shall often write 1 instead of e in rule (b), and g~?
instead of g’ in rule (c) (g~ is the inverse of g).

The order of G is the number of elements in it, if this is finite; the
order of the element g € G is the smallest positive integer z such that
g" = e (where g" means the product of g with itself n times).

A group with just one element is called a #rivial group, often written
0. .

A subset H of a group G is called a subgroup if m(H =« H) < H and
H satisfies rules (a)-(c) with respect io m.

Proposition 1.3.2 4 non-empty subset H of G is a subgroup 1( and
only if g18;* € H for all g,, g, € H. |} .

Theorem 1.3.3 If H is a subgroup of a finite group G, the order of
H divides the order of G. ||

Definition 1.3.4 Given groups G and H, a homomorphism
6:G—H is a function such that 6(g,g;) = 6(g,)0(g,) for all
£1:£2€ G. 0 is an isomorphism (or is isomorphic) if it is also a (1-1)-
correspondence; in this case G and H are said to be isomorphic,
written G > H. We write Im 6 for 6(G), and the kernel of 8, Ker 6, is
the subset {g € G | (g) = e}, where e is the unit element of H.
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Example 1.3.5 The identity function 1;: G — G is an isomorph-
ism, usually called the ideniity isomorphism. |

Proposition 1.3.6

(a) The composite of two homomorphisiis is a homomorphism.

(b) If 6 is an isomorphism, the inverse function is also an isomorphism.

(c) If 0: G— G is a homomorphism, Im 0 is a subgroup of H and
Ker 6 is a subgroup of G. 6 is (1-1) if and only if Ker 0 contains only the
unit element of G. |

Definition 1.3.7 Two elements g,, g, € G are conjugate if there
exists & € G such that g, = A~g,h. A subgroup H of G is normal
(self-conjugate) if g~*hg € H for all he H and g € G.

Given a normal subgroup H of a group G, define an equivalence
relation R on G by the rule g, Rg, if and only if g, g5 ! € H; then Ris an
cquivalence relation and the equivalence class [g] is called the coset

of g.

Theorem 1.3.8 The set of distinct cosets can be made into a group
by setting [g,][g2] = [£:82]- 1

Definition 1.3.9 The group of Theorem 1.3.8 is called the
quotient group of G by H, and is written G/H. .

Proposition 1.3.10 The function p: G — G|H, defined by p(g) =
[£], s @ homomorphism, and is onto. Ker p = H. |

Theorem 1.3.11 Given groups G, G', normal subgroups H, H' of
G, (™ respectively, and a homomorphism 0: G — G’ such that 6(H) <
H', there exists a unique homomorphism 8: G/H — G’|H’ such that

Blg] = [6(2)- 1

Proposition 1.3.12  Given a homomorphism 6: G — H, Ker p is a
normal subgroup of G, and 8: G/Ker 8 — Im 8 is an isomorphism. |

Definition 1.3.13 Given a collection of groups G,, one for each

element a of a set 4 (not necessarily finite), the direct sum @ G, is the
acA

set of collections of elements (g,), one element g, in each G,, where all
but a finite number of the g,’s are unit elements. The multiplication in
@ G, is defined by (g,)(gs) = (g.£2), that is, corresponding elements

acA
in each G, are multiplied together.
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We shall sometimes write @ G, instead of @ G,, if no ambiguity

acd

- ©
can arise; and if A is the set of positive integers we write @ G,
n=1

(similarly é G,oreven G, ® G, @&---@ G, if A4 is the set of the
r=1

first n positive integers). In the latter case, we prefer the notation
21 @D gy @D - - @ g, rather than (g,) for a typical element.

Proposition 1.3.14 Given homomorphisms 0,: G,-> H, (a € 4),
the function @ 0,: ® G, — @ H,, defined by @ 0,(g.) = (0a(£2)), 35 @
aed a€d
homomorphism, which is isomorphic if each 6, is. |

Once again, we prefer the notation 6, @ 0, ®--- @D 6, if 4 is the
set of the first # integers.

Definition 1.3.15 Given a set A, the free group generated
by A, Gp {4}, is defined as follows. A word w in A is a formal
expression

w = ail. 3 .a;l, .

where a,, . . ., a, are (not necessarily distinct) elementsof 4, ¢ = +1,
and n > 0 (if n = 0, w is the ‘empty word’, and is denoted by 1).
Define an equivalence relation R on the set of words in 4 by the rule:
w, Rw, if and only if w, can be obtained from w; by a finite sequence of
operations of the form ‘replace af* - - -a§* by af*- - -af'a*a~ta}}- - -a
ora®---aya~'a'a;’}}- - -ax* (0 < r < nm), or vice versa’. The elements
of Gp {4} are the equivalence classes [w] of words in A4, and the
multiplication is defined by

[ogt- - agllaseci - -aie] = [of+ - -agragirt - ap]
Normally the elements of Gp {4} are written without square brackets,
and by convention we write a for a', a? for a'a’, a=2 for a~*a~?, and
so on. The omission of square brackets has the effect of introd\ucing

equalities such as a?a~* = g, aa™! = 1 (note that 1 is the unit
element of Gp {4}).

Example 1.3.16 The group of integers under addition (usually
denoted by Z) is isomorphic to Gp {4}, where a denotes a set
consisting of just one element a. |

Proposition 1.3.17 Given a set A, a group G and a function

8: A— G, there exists a unigue homomorphism 8: Gp {A} — G such
that 6(a) = 6(a) for each ac A. |
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Definition 1.3.18 Given a set B of elements of Gp {4}, let B be
the intersection of all the normal subgroups of Gp {4} that contain B.
B is itself a normal subgroup (called the subgroup generated by B), and
the quotient group Gp {4}/B is called the group generated by A,
subject to the relations B, and is written Gp {4; B}. The elements of
Gp {4; B} are still written in the form of words in 4, and the effect of
the relations B is to introduce new equalities of the form b = 1, for
each element b € B.

A group G is finitely generated if G ~ Gp {A4; B} for some finite set
A; in particular, if 4 has only one element, G is said to be cyclic.

Example 1.3.19 For each integer n > 2, the group Z, of integers
modulo 7, under addition mod #, is a cyclic group, since Z, ~
Gp {a; a"}.

In fact every group G is isomorphic to a group of the form
Gp {4; B}, since we could take 4 to be the set of all the elements of G.
Of course, this representation is not in general unique: for example,
Gp {a; a®} ~ Gp {a, b; @, b}.

Proposition 1.3.20 A function 6: A — G, such that 0(b) = e (the
unit element of G) for all be B, defines a unique homomorphism
8: Gp {4; B} — G, such that 6(a) = 8(a) for allac A. |

Definition 1.3.21 A group G is said to be abelian (commutative) if
£.82 = gag: for all g4, g€ G. In an abelian group, the notation
£ + g2 is normally used instead of g,g, (and the unit element is
usually written 0). Similarly, one writes — g instead of g~ 1.

Observe that every subgroup of an abelian group is normal, and that
every quotient group of an abelian group is abelian, as also is every
direct sum of a collection of abelian groups.

Definition 1.3.22 Given a group G (not necessarily abelian), the
commutator subgroup [G G] is the set of all (finite) products of elements
of the form g, g.g7 g5 1.

Proposition 1.3.23 [G, G] is a normal subgroup of G, and G/[G, G]
ts abelian. Given any homomorphism 6: G — H into an abekian group,
[G, G] < Ker 6.

Proposition 1.3.24 If G ~ H, then G/[G, G] ~ H/[H, H]. §

Definition 1.3.25 Given a set 4, the free abelian group generated
by . Ab {4}, is the group Gp {4}/[Gp {4}, Gp {4}]."
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Proposition 1.3.26 Ab {4} ~ Gp {4; B}, where B is the set of all
elements of Gp {A} of the form a,aza;'a;?*. |}

The elements of Ab {4} will normally be written in the form
€8, + - +e€a, ( = 1), and the coset of 1 will be denoted by 0.

Definition 1.3.27 If B is a set of elements of Ab {4}, let B be the
intersection of all the subgroups of Ab {4} that contain B: thus Bis a
subgroup and consists of all finite sums of elements of B (or their
negatives), together with 0. The quotient group Ab {4}/B is czled the
abelian group generated by A, subject to the relations B, and is written
Ab {4; B}.

As in Definition 1.3.18, the elements of Ab {4; B} are still written
in the form of ‘additive’ words in 4.

. Proposition 1.3.28 If G = Gp{4; B}, and p: G — GJ[G, G] is
the homomorphism of Proposition 1.3.10, then G/[G, G] =~ Ab{4;p(B)}. I

Examples 1.3.29 Particular examples of abelian groups include Z
and Z,: observe that Z & Ab {a} and Z, >~ Ab {a; na}. We shall also
make frequent use of the groups of rational, real and complex numbers,
under addition: these are denoted by R, O and C respectively. |}

+ There is a very useful theorem giving a standard form for the
finitely generated abelian groups.

Theorem 1.3.30 Let G be a finitely generated abelian group. There
exists an integer n > 0, primes p,, ..., p, and integers ry,.
(m > 0,r, > 1), such that

GxnZ®Zy; D - D Zym
(Here, nZ denotes the direct sum of n copies of Z.) Moreover, if
H = lZ@ Za:x @' g @ Zq:"‘r

then G = H if and only if n = I, r» = k, and the numbers p}, . . ., p
and g1, ..., gi* are equal in pairs. |§

Y >

Definition 1.3.31 A sequence of groups and homomorphisms

6; B4y
e G —> Gy —> Gy —>- -

is called an exact sequence if, for each 7, Ker 6, = Im 6,_, (if the
sequence terminates in either direction, for example Gt G, —- -
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2] s & a
or ---—> G,_; =3 G,, then no restriction is placed on Ker 8, or

Im 9n-1)

Example 1.3.32 The sequence 0 — G2 H—0 is exact if and
only if 6 is an isomorphism. (Here, 0 denotes the trivial group, and
0— G, H— 0 the only possible homomorphisms.) This follows
immediately from the definitions.

Similarly, if H is a normal subgroup of G and i: H — G is defined
by i(k) = k for all & € d, then

0>HSGSGH—0

is an exact sequence. [

Propositior 1.3.33 Given exact sequences

0—> G, 3 H,2% K,—0,
one for each element a of a set A, the sequence
s (G s G B s APy b O

ac4 ac4 ac4
is also exact. |

Definition 1.3.34 A square of groups and homomorphisms
G, —> G,

o

111—;—>}¥2

is said to be commutative if ¢,0, = 6,¢4,. Commutative triangles, etc.,
are similarly defined, and in general any diagram of groups and
homomorphisms is commutative if each triangle, square, ... in it is
commutative.

Proposition 1.3.35 Given a commutative diagram of groups and
homomorphisms

Gl Gg G3 G‘ C5
W1l Wzl W:l Wcl Wsl
Hy =0 Ha 0 Hy 5 Hy 50 H,

in which the rows are exact sequences, and i, Y, are isomorphisms, s,
is onto and Y is (1-1), then Y5 is an isomorphism.
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Proof. To show that y; is (1-1), consider an element x € G5 such
that y3(x) = 1 (we shall write 1 indiscriminately for the unit element
of each group). Then ,0;5(x) = ¢ahg(x) = 1, so that ,(x). = 1 since
i, is isomorphic. By exactness, therefore, x = 8,(y) for some y € G,;

and then ¢ufa(y) = P3ba(y) = 1. By exactness again, ig(y) = ¢4(2)
for some z € H,; and 2 = y;(w) for some w € G, since y, is onto. Thus

Y201 (w) = d13h1(w) = Po(y), so that 6,(w) = y; but then x = 0,(y) =
0,0,(w) = 1.

The proof that ¢ is onto is rather similar. This time, choose an
element x € H;; then ¢;(x) = y(y) for some y € G,, since ¥, is

isomorphic. Thus §50,(y) = dabs(y) = dea(x) = 1, s0 that ,(y) = 1
since 5 is (1-1). Hence by exactness y = 63(2) for some z € G,.

Unfortunately there is no reason why y;3(2) should be x, but it is at

least true that ¢5((5(2))7'%) = ($405(2))"*($s(*)) = 1, so that
(Pa(2))~2x = doyfp(w) for some w € Gy, since i, is isomorphic. Thus

a(2. 0(w)) = (¥3(2)) Satba(w) = (¥a(2))(5(2)) " 'x = x, and hence ;5

is onto. ||

Proposition 1.3.36 Given an exact sequence of abelian g;'oups and

homomorphisms
0G4 H% K0,

and a homomorphism y: K — H such that ¢ = 1y, then H ~ G @ K.

Proof. Define a: G K — H by o(g D k) = B(g) + Y(k): it is
easy to see that « is a homomorphism. Also « is (1- l), for if
(g @ k) = 0, we have

0 = #(8(g) + Y(k)) = di(k) = k;

but then 8(g) =0, so that g = 0 since 8 is (1-1).

Moreover « is onto, since given & € H we have

$(h — yb(h)) = (k) — Sip(h) = 0.

Thus there exists g € G such that & — (k) = 6(g), that is,

h = 6(g) + yd(h) = (g D $(h). |
An exact sequence as in the statement of Proposition 1.3.36 is called
a split exact sequence.
Of course, it is not true that all exact sequences 0 > G — H —
K — 0 split. However, this is true if K is a free abelian group.

Proposmon 1.3.37 Given abelian groups and homomorphisms

G2 H <2 K, where 0 is onto and K is free abelian, there exists a
homomorphism : K — G such that 6 = .



