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Foreword

My husband John died before this book was completed, and I am grate-
ful that members of the Drainage Research Group (DREG) at Heriot-Watt
University agreed to take on the task to complete and publish it. T am indebted
to them.

John was always a ‘research fellow™ at heart and wanted to leave his
research and books based on his life’s work as a legacy to his new found
knowledge. This has now been secured. But not only has he left his research
to posterity — he has also left a team of researchers that have been inspired by
his work and will take this forward in the future. I hope this book will also
stimulate your interest in fluid mechanics applied to drainage systems as well.

Dr Jean Swaffield
February 2014
Edinburgh



Contributors’ Foreword

When John Swaffield conceived this work it was intended to be a companion
book to “Transient Airflow in Building Drainage Systems’, which dealt with
building drainage ventilation and system design from an air flow and air
pressure point of view. Taken together, these two books were to encapsulate
John’s work in building drainage research spanning over 40 years. It is safe
to say that John Swaffield was the leading academic authority on building
drainage system research, and these two books were intended as his legacy to
future generations of researchers.

It was with great sadness that we undertook to complete this book after
John’s death in 2011; however, it was felt that this book needed to be fin-
ished in order to complete the pair.

We are in little doubt that this book would have been different had John
finished it himself. His unique perspective and experience in this field of
study would have given the conclusions a very personal flavour. Having said
that, we have tried to be as faithful to his views as much as possible, drawing
on his writings as much as possible, but also on personal conversations and
correspondence with him.

John is sorely missed by all who worked with him. We hope that we have
done his work justice in this book and that his legacy will continue to shape
the work of other researchers in this field for years to come.

Michael Gormley
Grant Wright
Ian McDougall
Edinburgh
September 2014
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