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Preface

The intent of these notes is to provide a detailed and comprehensive treatment
of harmonic and subharmonic function theory on hyperbolic space in R".
Although our primary emphasis will be in the setting of the unit ball B with
hyperbolic metric ds given by

2|dx
P

- , 1
I— 2 (n

we will also consider the analogue of many of the results in the hyperbolic
half-space H. Undoubtedly some of the results are known, either in the setting
of rank one noncompact symmetric spaces (e.g. [38]), or more generally, in
Riemannian spaces (e.g. [13]). An excellent introduction to harmonic function
theory on noncompact symmetric spaces can be found in the survey article [47]
by A. Koranyi. The 1973 paper by K. Minemura [57] provides an introduction
to harmonic function theory on real hyperbolic space considered as a rank one
noncompact symmetric space. Other contributions to the subject area in this
setting will be indicated in the text.

With the goal of making these notes accessible to a broad audience,
our approach does not require any knowledge of Lie groups and only a
limited knowledge of differential geometry. The development of the theory
is analogous to the approach taken by W. Rudin [72] and by the author [84]
in their development of Mobius invariant harmonic function theory on the
hermitian ball in C". Although our primary emphasis is on harmonic function
theory on the ball, we do include many relevant results for the hyperbolic
upper half-space H, both in the text and in the exercises. With only one or
two exceptions, the notes are self-contained with the only prerequisites being
a standard beginning graduate course in real analysis.

In Chapter 1 we provide a brief review of Mobius transformation in R”.
This is followed in Chapter 2 by a characterization of the group M(B) of

Xi



Xii Preface

Mobius self-maps of the unit ball B in R”. As in [72] we define a family {¢g, :
a € B} of Mdbius transformations of B satisfying ¢,(0) = a, g,(a) = 0,
and @4(@qa(x)) = x for all x € B. Furthermore, for every ¥ € M(B), it is
proved that there exists @ € B and an orthogonal transformation A such that
Y = A@,. When n = 2, the mappings ¢, correspond to the usual analytic
Mobius transformations of the unit disc D given by

0al2) = l" . @)
— az

Some of the properties of the mappings {¢,} and of functions in M(B) are
developed in Section 2.1. In this chapter we also introduce the hyperbolic
metric in B and in the hyperbolic half-space H. Most of the results of these
two sections are contained in the works of L. V. Ahlfors [4], [5] , and the text
by A. E. Beardon [11].

In Chapter 3 we derive the Laplacian, gradient, and measure on B that are
invariant under M(B). Even though the formula for the Laplacian can be
derived from the hyperbolic metric, we will follow the approach of W. Rudin
[72, Chapter 4]. For f € C%(B) we define Axf by

Apf(a) = A(f o ¢a)(0),

where A is the usual Laplacian in R". The operator Ay is shown to satisfy
Ap(foy)(x) = (Apf)(Y(x)) for all ¥y € M(B). Furthermore, an explicit
computation gives

Apf(x) = (1 = X112 Af(x) + 2(n — 2)(1 — |x|?)(x, Vf(x)),

where Vf is the Euclidean gradient of the function f. In this chapter it is also
proved that the Green’s function for Ay is given by Gup(x,y) = g(lex(M))),
where g is the radial function on B defined by

Tl — 2n——
-1 [ 02

In Theorem 3.3.1 we prove that for ¢ € M(B), the Jacobian Jy of the
mapping v satisfies
(1= lym>”

(1=

From this it now follows that the M&bius invariant measure  on B is given by

My ()] =

dr(x) = (1 — [x[»)™"dv(x),

where v is the normalized volume measure on B. In the exercises we develop
the invariant Laplacian, Green’s function, and invariant measure on H.
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A real-valued C? function f on B is defined to be either H-harmonic or
‘H-subharmonic on B depending on whether A,f = 0 or Axf > 0. It is well
known that a continuous function f is harmonic in the unit disc ID if and only
ifforallr, 0 <r < l,andw € D,

1 2n .
fw) = 2 o flow(re™))dt, 3)

where ¢, is the Mobius transformation of D given by (2). The above is called
the invariant mean-value property. One of the first results proved in Chapter
4 is the following analogue of the invariant mean-value property: A real-valued
C? function f is H-subharmonic on B if and only if foralla € Band0 < r < 1,

f@) < /S Fl@alrd)do (1), )

with equality if and only if f is H-harmonic on B. In the above, S is the unit
sphere in R", o is normalized surface measure on S, and ¢, is the Mabius
transformation of B mapping 0 to a with ¢,(¢,(x)) = x. The integral in (4) is
an average of f over the hyperbolic or non-Euclidean sphere {¢,(rf) : 1 € S}
whose hyperbolic center is a. Inequality (4) is then used in Section 4.3 to
extend the definition of #-subharmonic to the class of upper semicontinu-
ous functions on B. The remainder of the chapter is devoted to extending
some of the standard results about subharmonic functions to #-subharmonic
functions on B. We conclude the chapter with a discussion of quasi-nearly
‘H-subharmonic functions and prove several inequalities involving these func-
tions that will prove useful later in the text.

The Poisson kernel Py, for Ay is introduced in Chapter 5. In Section 5.1 we
prove using Green’s formula that for (a,1) € B x S,

Ph(a,1) = — lim (1 = 22 (VG,(r), 1),

where G,(rt) = Gp(a, rt) is the Green’s function for Ay, This immediately
gives

1— |

n—1
m) 5 (x, t) € B x S.

Pp(x £) = (
The standard results for Poisson integrals of continuous functions are included
in Section 5.3, and in Section 5.2 we prove a result of P. Jaming [43] that
provides an integral representation of the Euclidean Poisson kernel in terms of
the hyperbolic Poisson kernel. In Section 5.5 we investigate the eigenfunctions
of Ap. We close the section with a brief discussion of the Poisson kernel
on H.
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In Chapter 6 we consider the spherical harmonic expansions of H-harmonic
functions. One of the key results of this section is that if p, is a spherical
harmonic of degree « on S, then the Poisson integral Py|p, | of py is given by

Palpal() = [1*Sna (6P ()

where S, is given by a hypergeometric function. Interestingly, when n is
even, S,q(r) is simply a polynomial in r of degree n — 2. These results are
then used to show how the Poisson integral P[g]| can be computed for any
polynomial g on S. As an example, in R*, the H-harmonic function with
boundary values £ is given by Py[2](x) = § + 2 — )2 — [x*). In
contrast, the Euclidean harmonic function # with boundary values t,2 is given
by h(x)= ;(1 —|x|*)+x3. Finally, in Section 6.3 we follow the methods of
P. Ahern, J. Bruna, and C. Cascante [2] to derive the spherical harmonic
expansion of #-harmonic functions on B.

Chapter 7 is devoted to the study of Hardy and Hardy—Orlicz type spaces of
#H-harmonic and H-subharmonic functions on B. In Chapter 8, we study the
boundary behavior of Poisson integrals on B. This chapter contains many of
the standard results concerning non-tangential and radial maximal functions.
In addition to proving the usual Fatou theorem (Theorem 8.3.3) concerning
non-tangential limits of Poisson integrals of measures, we also include a proof
of a local Fatou theorem of 1. Privalov [68] for H-harmonic functions on B.

The Riesz decomposition theorem for #{-subharmonic functions is proved
in Chapter 9. The main result of this chapter (Corollary 9.1.3) proves that if
[ is H-subharmonic on B and f has an H-harmonic majorant, then

f) = Frx) — /B Gn(x, y)dps(y),

where ji7 is the Riesz measure of f and Fy is the least #{-harmonic majorant
of f. In Section 9.2 we include several applications of the Riesz decomposition
theorem, including a Hardy—Stein identity for non-negative #-subharmonic
functions for which f”, p > 1, has an H-harmonic majorant on B. In Section
9.3 we extend a result of D. H. Armitage [8] concerning the integrability of
non-negative superharmonic functions. We conclude the chapter by proving
that invariant Green potentials of measures have radial limit zero almost
everywhere on S, and provide an example of a measure u for which the Green
potential of x has non-tangential limit oo almost everywhere on S.

Finally, in Chapter 10 we introduce and investigate basic properties of
weighted Bergman- and Dirichlet-type spaces of #-harmonic functions
on B, denoted respectively by B2 and Dj. These spaces consist of the set
of H-harmonic functions f on B for which f, respectively |V’f|, are in
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LP((1 — |x|*)?dr(x)),0 < p < 00, ¥ > 0, where 7 is the invariant measure
on B and V" is the invariant gradient on B. One of the main results of this
chapter is that if y > (n — 1), then f € BY if and only if f € D} for all
p, 0 < p < o0. In Section 10.4 we investigate the integrability of functions in
Bf and D,’,’ for y < (n—1). This chapter also contains a discussion of Mbius
invariant spaces of H-harmonic functions and the Berezin transform on B.
We conclude the chapter with three theorems of Hardy and Littlewood for H-
harmonic functions, and the Littlewood—Paley inequalities for H-subharmonic
functions.

At the end of each chapter, I have included a set of exercises dealing with
the topics discussed. Many of these problems involve routine computations
and inequalities not included in the text. They also provide examples relevant
to the topics of the chapter. Also included are problems whose solutions may
be suitable for possible publication. The latter are marked with an asterisk.
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Mobius Transformations

In this chapter we provide a brief review of Mobius transformations on
n-dimensional Euclidean space R” (n > 2). A good reference for these topics
is the monograph by A. F. Beardon [11]. First, however, we begin with a review
of notation that will be used throughout these notes.

1.1 Notation

For x, y € R" we let (x,y) = ZJ';] xjyj denote the usual inner product on R”
and |x| = 4/(x,x) the length of the vector x. For a € R" and r > 0, the ball
B(a, r) and sphere S(a, r) are given respectively by

B(a,r) ={xeR": |x —a| < r},
S(a,r)={xeR": [x—a|=r}.

The unit ball and unit sphere with center at the origin will simply be denoted
by B and S respectively.! The one-point compactification of R”, denoted R,
is obtained by appending the point oo to R”. A subset U of R” = R" U {00} is
open if it is an open subset of R", or if U is the complement in R of a compact
subset C of R". With this topology R” is compact.

For a subset D of R”*, D denotes the closure of D, Int (D) the interior of D,
aD the boundary of D, and D the complement of D in R". Also if E and F are
sets, E \ F denotes the complement of F in E, thatis, E\ F = EN F.

The study of functions of n-variables is simplified with the use of multi-index
notation. For an ordered n-tuple @ = («y,...,q,), where each ¢; is a non-
negative integer, the following notational conventions will be used throughout:

1 If we wish to emphasize the dimension n, we will use the notation B, and S, to denote the unit
ball and sphere in R".



2 Mobius Transformations

| =1+ Fan al=alay!, X =x7-0x
and

lalf
Df =
dx,' - Oxp

If €2 is an open subset of R”, we denote by (), k=0,1,2, ... the set of
real-valued (or complex-valued) functions f on © for which D”f exists and is
continuous for all multi-indices & with |&| < k. Thus C°%(£2), or simply C(£2),
denotes the set of real-valued (or complex-valued) continuous functions on €2,
and C*™(2) the set of infinitely differentiable functions on £2. Also, the set of
functions f € C¥(Q) for which Df, |a| < k, has a continuous extension to
Q@ will be denoted by CX(Q). If f : @ +> R, then the support of f, denoted
suppf, is defined as

suppf = {x € Q2 : f(x) # 0}.

The set of continuous functions on §2 with compact support will be denoted by
C+(€2). The notations C’c‘(Q) and C2°(S2) have the obvious meanings.

A linear_transformation A : R" > R" is said to be orthogonal if |[Ax| = |x|
for all x € R”. The set of orthogonal transformations of R" will be denoted by
O(n). If A is represented by the n x n matrix (a; j), then A is orthogonal if and
only if

ikGQjk = 0ij= o
=1 0, i #].

If Y (x) = (Y1), ..., ¥a(x)) isa C! mapping of an open subset 2 of R” into
R”, then the derivative ¥(x) is the n x n matrix given by

¥ = (%) :

9% / jj=1

and the Jacobian Jy of the transformation v is given by Jy (x) = det ¢’ (x).

1.2 Inversion in Spheres and Planes

Definition 1.2.1 The inversion® (or reflection) in the sphere S(a,r) is the
function ¢ (x) defined by

2 Although we will mainly be interested in the case n > 2, the formulas for inversions in spheres
and planes are still meaningful when n = 1.
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2
7
d(x)=a+ —) (x — a). (1.2.1)
lx—al
The inversion in the unit sphere S is the mapping ¢ (x) = x* where
* W x # 0,00,
=10 x=00;
0 x= 0. e

Thus (1.2.1) can now be rewritten as
d(x) =a+ r*(x—a)*.

The reflection ¢ (x) is not defined at x = a. Since |¢p(x)| — oo as x — a we
set ¢(a) = 0o. Also, since lim|yj 0 [ (x) — a| = 0, we set ¢(00) = a. Thus
¢ 1s defined on all of R”, and it is easily shown that ¢ is continuous in the
topology of R”. A straightforward computation also shows that ¢(¢(x)) = x
for all x € R™. Thus ¢ is a one-to-one continuous map of R” onto R” satisfying
¢(x) = xif and only x € S(a,r).

In addition to reflection in a sphere we also have reflection in a plane. For
ae€R" a+#0,andt € R, the plane P(a,t) is defined by

P(a,t) = {x e R" : (x,a) = t}.
By convention oo belongs to every plane P(a, ).

Definition 1.2.2 The inversion (or reflection) in the plane P(a,t) is the
function r(x) defined by

¥ (x) = x+ Aa,
where . € R is chosen so that %(x + ¥ (x)) € P(a,1).
Solving for A gives
¥(x) =x—2[(x,a) — tla*, xeR" (1.2.2)
For the mapping ¥ we have
Y@ = Ix* + O(),

and as a consequence limy—oc |¥(x)] = oc. Thus as above we define
Y (00) = o0. With this definition the mapping ¥ again satisfies ¥ (¥ (x)) = x
for all x € R". Thus ¥ is a one-to-one continuous map of R" onto itself with
¥ (x) = x if and only if x € P(a,t). It is well known that each inversion (in
a sphere or a plane) is orientation-reversing and conformal (see [11, Theorem
3.1.6)).



